Model Counting Competition Data Format
(version 1.1)*

Johannes K. Fichte Markus Hecher Arijit Shaw
June 25, 2024

Abstract

Propositional model counting asks to compute the number of satisfy-
ing assignments (models) of a propositional formula. Over the past years,
various solving techniques have been established and implemented into
combinatorial solvers, such as SAT-based solving with caching, knowl-
edge compilation, approximate solving utilizing sampling by SAT solvers,
or dynamic programming. Following the improvements in solving the
problem, a practical competition was conceived in 2019. The first compe-
tition started in the Spring of 2020 and has been repeated annually as part
of the International Conference on Theory and Applications of Satisfia-
bility Testing (SAT) Competitions. The 2021 iteration of the competition
introduced a DIMACS-like data format that is still in use. This docu-
ment extends the format and provides minor changes, including support
for additional versions of the counting problem.

More information on the competition can be found at modelcounting.org,.

1 Introduction

The input format remains compatible with the 2021 Competition format [FH21].
In addition, we introduce the following updates for the 2024 iteration:

e Input supports projected weighted model counting instances.
We introduced an experimental track already in 2022 and use that format.

e The solver needs to support the type line and either handle the problem
according to the type line or output an error.
Supporting the problem type only via commandline parameters is consid-
ered insufficient.

o We allow negative and zero weights for weighted instances. If the solver
cannot handle negative weights, a format error must be returned.

*Last updated June 6, 2024 for the Bonus Track on Weighted Model Counting of the 2024
Model Counting Competition.

https://modelcounting.org/

e The output format supports fractional numbers.

e Approximation guarantees are included in the output format.

In the following description, we copy the previous format description and color
changes in blue.

2 Input Format (DIMACS-like)

In the Model Counting Competition 2021, we use a DIMACS CNF-like in-
put format [TCCT93|. The format extends the format used in SAT competi-
tions [JBRS12, BFH"’QOE by introducing statements for weights and projections
similar as in Cachet [KS05] or Ganak [SRSM19].

The following description gives an idea on the expected input format:

c ¢ this is a comment and will be ignored

C

c
c
p
c
c
c
c
c
c

c REPRODUCIBILITY LINE MANDATORY FOR SUBMITTED BENCHMARKS
r originUrl/doi descUrl/doi [generatorUrl/doi]
c HEADER AS IN DIMACS CNF
cnf n m
c OPTIONAL MODEL COUNTING HEADER
t mc|wmc | pmc | pwme
¢ PROBLEM SPECIFIC LINES for wmc|pmc
P ---
p .-
c CLAUSES AS IN DIMACS CNF
-1 -20
3-40
c this is a comment and will be ignored
50
60

2
c
4
4

In more details (note that we print symbols in typewriter font):

e Line separator is the symbol \n. Expressions are separated by space.

e A line starting with character ¢ r is a comment. The solver may ignore it.
The line aims for open data and reproducibility of the submitted instances
expressing the origin of the benchmarks. The line will be added after
competition when publishing the instances. originUrl/doi states where
the instance can be downloaded (either as URL or DOI). descUrl/doi
links to a description of the benchmarks. generatorUrl/doi provides an
optional URL/DOI to where a problem generator can be found.

e A line starting with character ¢ t is a comment. The starting character
will be followed by mc, wmc, pmc, or pwmc indicating possible problem

1

See, for example, http://www.satcompetition.org/2009/format-benchmarks2009.html

http://www.satcompetition.org/2009/format-benchmarks2009.html

specific lines starting with cs in the file. If present, the line will occur
prior to problem specific line. The solver needs to support the line and
either handle the problem or output an error.

e A line starting with character ¢ p provides problem specific details for
weighted or projected model counting. Lines may occur anywhere in the
file. We assume that lines are consistent and provide no contradicting
information. We provide more details on its meaning below.

e Lines starting with character c followed by a second character differing
from p and s are comments and can occur anywhere in the file. For
convenience, we provide comments by lines starting with ¢ c.

e Variables are consecutively numbered from 1 to n.

e The problem description is given by a unique line of the form p cnf
NumVariables NumClauses that we expect to be the first line (except
comments). More precisely, the line starts with character p (no other
line may start with p), followed by the problem descriptor cnf, followed
by number n of variables followed by number m of clauses each symbol is
separated by space each time.

e The remaining lines indicate clauses consisting of decimal integers sepa-
rated by space. Lines are terminated by character 0. The Line 2 -1 3
0\n indicates the clause “2 or not 1 or 3” (ve V —w; V v3). If more lines
than announced are present, the solver shall return a parser error and
terminate without solving the instance.

e Empty lines or lines consisting of spaces/tabs only may occur and can be
ignored.

Weighted Model Counting For weighted model counting, we introduce op-
tional problem specific lines:

c p weight 1 0.4 0
c p weight -1 0.6 0
cp ...

In more details (note that we print symbols in typewriter font):

e The weight function is given by lines of the form c p weight ¢ wy 0
defining the weight wy for literal ¢, where 0 < wy. The weight will be
given as floating point (e.g., 0.0003) with at most 9 significant digits
after the decimal point, or in 32-bit scientific floating point notation (e.g.,
1.23e+4), or as fraction (e.g., 3/10) consisting of two integers separated
by the symbol /.

e We expect that the submission tests instances and output if it cannot
be handled correctly. For example, if an instance specifies an unexpected

number of significant digits, larger floating point values, or large fractional
values. In such a case, the solver should output a parsing error as specified
in the return code section.

We will provide only instances where both wy and w—, are given.

If a weight 0 < w, < 1 is defined for a literal ¢ but —¢ is not given, we
assume w—y = 1 —wy (assume that ——a = a). In other words:

c p weight 1 0.4 0
or

c p weight -1 0.6 0
are the same as

c p weight 1

4
c p weight -1 0.6

0.4 0
0.6 0
The solver should output a warning that explicitly states how the weight
is set.

If a weight wy < 0 is defined for a literal ¢, the weight for literal —¢ must
be given as well. Otherwise, the solver must output a format error and
abort.

If a weight wy = 0 is given, the solver should should output a warning
stating which weight is 0.

The solver should output an error on instances that cannot be handled
or are not properly tested, e.g., if the solver can only handle weights wy,
w-p >0 and wp +w—y = 1.

For compatibility, with #SAT we say that if for a variable x, there is
neither a weight for « nor —x given, it is considered 1.
Note: this differs from the format used in Cachet.

Projected Model Counting For projected model counting, we introduce
optional problem specific lines:

c c INDICATES VARIABLES THAT SHOULD BE USED
c p show varidl varid2 ... O

c ¢ MORE MIGHT BE GIVEN LATER
c p show varid7 varid23 ... O

In more details (note that we print symbols in typewriter font):

e Projection variables will be given by lines starting with ¢ p show followed
by the identifier of the variables. Lines describing to add variables to a
projection set may occur anywhere in the files and will be terminated by
symbol 0.

Note: if all variables are stated using show, we consider model counting. if no
variables are stated the problem is simply to decide satisfiability.

3 Output Format

We expect that the solver outputs result to stdout in the following format.

This output describes a result of a run from
a [weighted|projected|projected weighted] model counter.

The following line keeps backwards compatibility

with SAT solvers and avoids underflows if result is O.
MANDATORY

SATISFIABLE|UNSATISFIABLE | UNKNOWN

The following solution line is optional.

It allows a user to double check whether a solver
that provides multiple options was called correct.

(0]
(0]
[¢)
(@)
(@)
(0]

MANDATORY

type [mc|wmc|pmc|pwmc]

The solver has to output an estimate in scientific notation
on the solution size, even if it was an exact solver.
MANDATORY

[loglO-estimate|negloglO-estimate] VALUE

The solver outputs the solution in its highest precision.
MANDATORY

SOLVERTYPE PRECISION NOTATION VALUE

OPTIONAL

pac guarantees epsilon: E delta: D

InternalValueForOpt=X

Internal=X

O 0O 0 0 0000000000000 noo060o0o0o0o0

O O m O m O Om O OO m O o O O o

In more details:

e While the solver may use a line staring with ¢ for comments in the output,
we suggest to use lines starting with ¢ o to indicate a comment.

e The solver has to announce whether the instance is satisfiable or unsatisfi-
able by a line starting with s followed by SATISFIABLE or UNSATISFIABLE.
The solver may output UNKNOWN, but is not allowed to output any other
value than these three if a line starting with s is present.

e The solver has to announce an estimate on the solution by a line starting
with ¢ s [neg]loglO-estimate VALUE where VALUE is a string represent-
ing the result cnt (model count/ weighted model count/ projected model
count,/ projected weighted model count) in log;,-Notation (see Section [4]
of double precision, i.e., 15 significant digits. More precisely:

We let VALUE := log;,(|cnt|)

If cnt > 0, output “c s loglO-estimate VALUE”.

If cnt = 0, output “c s loglO-estimate -inf”.

If cnt < 0, output “c s negloglO-estimate VALUE”.

e The output is has to be announced by a line starting with ¢ s followed by
strings indicating the solver type, the precision, the notation, and the re-
sult. The solver developer may use for SOLVERTYPE the following strings:
approx, exact, heuristic. In place of PRECISION, the solver developer
has to specify which the internal precision the solver used, allowed val-
ues are arb, single, double, quadruple, or other values according to
IEEET754 Standard. For NOTATION, the developer may chose logl0, float,
prec-sci, int, or frac. Then, in place of VALUE, the solver has to output
its computed result.

If the solver outputs an approximate solution, we suggest that the solver
additionally provides the guarantees. For example, by outputting the fol-
lowing line: ¢ s pac guarantees epsilon: 0.1 delta: 0.2

e The solver may output a result in log;, notation which is similar to the
format used in the probabilistic inference competitions UAT [GRST16].

e If the solver consists of a run script, which calls a pre-processor, consists of
multiple phases, or consists of a solving portfolio, we expect the developer
to output by a comment line which tool was started, what parameters it
used, and when the tool ended. Preferably as follows:

c o CALLS(1) ./preproc -parameters
c o stat CALL1 STARTED RFC3339-TIMESTAMP

c o stat CALL1 FINISHED RFC3339-TIMESTAMP
c o CALLS(2) ./postproc -parameters

e We suggest that the solver outputs internal statistics by lines starting with
c o DESCRIPTION=VALUE or ¢ DESCRIPTION : VALUE.

4 Examples

The following sections provide a few brief examples for each track with expected
input and output.

Model Counting

Example 1. The following text describes the CNF formula (set of clauses)

{{ﬁfﬂla ﬁ!L”Q}, {3827333, W‘C4}7 {5104, 1‘5}7 {934, CCG}}

c ¢ This file describes a DIMACS-line CNF in MC 2021 format
c ¢ The instance has 6 variables and 4 clauses.

p cnf 6 4

c t mc

-1 -2 0

2 3-40

c ¢ This line is a comment and can be ignored.
450

¢ The line contains a comment and can be ignored as well.
460

A solution is given as follows, but can also be modified according to the technique
of the solver:

c o This file describes a solution to a model counting instance.

s SATISFIABLE

Cc s type mc

c o The solver loglO-estimates a solution of 22.
c s loglO-estimate 1.342422680822206

c o Arbitrary precision result is 22.

c s exact arb int 22

Weighted Model Counting
Example 2. The following text describes the CNF formula (set of clauses)
{_‘xla _‘.132}, {an €3, _‘x4}a {.’1347 x5}a {.1347 -T6}}

with weight function {x; — 0.4, ~x1 — 0.6, 25 — 0.5, 7x9 — 0.5, 25 — 0.4, ~x3 —
0.6,x24 — 0.3, x4 — 0.7, 25 — 0.5, ~x5 — 0.5, 26 — 0.7, "5 — 03}

¢ ¢ This file describes a weighted CNF in MC 2021 format
c ¢ with 6 variables and 4 clauses

p cnf 6 4

c t wmc

c

c Weights are given as follows, spaces may be added

c ¢ to improve readability.
c p weight 1 0.4 0

c p weight 2 0.5 0

c p weight 3 0.4 0

c p weight 4 0.3 0

c p weight 5 0.5 0

c p weight 6 0.7 0
-1-20

2 3-40

c this is a comment and will be ignored
4 50

4 60

Cc same

The solution should be given in the following format (modified according to the
technique of the solver):

c o This file describes a solution to a weighted

¢ o model counting instance.

s SATISFIABILE

s type wmc

This file describes that the weighted model count is 0.345

loglO-estimate -0.460924
exact double float 0.346

O o0 o0 o000

(@)
(@)
S
S

Example 3 (Optional). The following text describes the CNF formula (set of
clauses)

{—\1'1,1'2}, {x3a —|:E2}, {$27:C1}7 {1'3»552}}

with weight function {x; — 0.1,—-z1 — 0.1,29 — 0.1, 25 — 0.9, 23 — 0.0235,
-3 — 0.0125} including a problem description line and two comments.

c ¢ This file describes a weighted CNF in MC 2021 format
c ¢ with 3 variables and 4 clauses

p cnf 3 4

c t wmc

-1 20

3
2
3

N = N
o O O

weight 1
weight -1
weight 2
weight 3
weight -3

O o0 o0 o0
ellso BBl o]

The solution should be given in the following format:

WARNING
L9:Sum of positive and negative literal is not equal to 1.
WARNING
L12:Sum of positive and negative literal is not equal 1.
This file describes a solution to a weighted
model counting instance.
SATISFIABILE
type wmc
This file describes that the weighted model count is
0.0004700000000000000532907051822
type wmc
logl0-estimate -3.327902142064282
exact arb logl0 -3.3279021420642824863435269891

O 0O 0000 noo0oo0o0o0o0
O O O O O ©O

n n n O O 0

Projected Model Counting
Example 4. The following text describes the CNF formula (set of clauses)
{—z1, 22}, {2, 23, 724}, {24, 25}, {74, 76} }

with projection set {x1,x2} including a problem description line and two com-
ments.

c ¢ This file describes a projected CNF in MC 2021 format
c ¢ with 6 variables and 4 clauses and 2 projected variables

p cnf 6 4 2

c t pmc

c p show 1 2

-1-20
2 3-40

cc this is a comment and will be ignored
4 50

4 60

A solution can be given in the following format:

o This file describes that the projected model count is 3
SATISFIABILE

s loglO-estimate 0.47712125471966

s type pmc

s exact arb int 3

O o0 o n o

Output log,,-Notation

We say that an output is in log;,-Notation if the result of the problem is the
value v, but the solver outputs log;,(v).

References

[BFH*20]

[FH21]

[GRST16]

[JBRS12]

[KS05]

[SRSM19]

[TCC+93]

Tomés Balyo, Nils Froleyks, Marijn J.H. Heule, Markus Iser, Matti
Jarvisalo, and Martin Suda, editors. Proceedings of SAT Competition
2020: Solver and Benchmark Descriptions. University of Helsinki,
Department of Computer Science, 2020.

Johannes K. Fichte and Markus Hecher. Model counting competition
2021: Call for benchmarks/participation. https://mccompetition.
org/assets/files/2021/competition2021.pdf, 2021.

Vibhav Gogate, Tahrima Rahman, Somdeb Sarkhel, David Smith,
and Deepak Venugopal. Uai 2016 inference evaluation. http://www.
hlt.utdallas.edu/~vgogate/uail6-evaluation/tuning.html,
2016.

Matti Jarvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Si-
mon. The international SAT solver competitions. In Al Magazin.
The AAAIT Press, 2012.

Henry Kautz and Tian Sang. Model counting using component
caching and clause learning. |https://www.cs.rochester.edu/u/
kautz/Cachet/cachet-wmc-1-21.zip., 2005.

Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel.
GANAK: A scalable probabilistic exact model counter. In Sarit
Kraus, editor, Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence (IJCAI’19), pages 1169-1176, Macao,
China, 2019. IJCAIL

Michael Trick, Vavsek Chvatal, Bill Cook, David Johnson, Cathy
McGeoch, and Bob Tarjan. The 2nd DIMACS implementation chal-
lenge: 1992-1993 on NP hard problems: Maximum clique, graph
coloring, and satisfiability. http://archive.dimacs.rutgers.edu/
pub/challenge/sat/benchmarks/, 1993.

10

https://mccompetition.org/assets/files/2021/competition2021.pdf
https://mccompetition.org/assets/files/2021/competition2021.pdf
http://www.hlt.utdallas.edu/~vgogate/uai16-evaluation/tuning.html
http://www.hlt.utdallas.edu/~vgogate/uai16-evaluation/tuning.html
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/
http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/

	Introduction
	Input Format (DIMACS-like)
	Output Format
	Examples

