
Counting complexity

Arnaud Durand

Université de Paris

July 6, 2021 - Counting and Sampling Workshop 2021

Introduction

I Subject: Characterizing hardness of counting problems
I Main instruments: reductions (as for any algorithmic task)
I Well-known that defining adequate reductions in this context

is not easy
I Classical reductions are either too weak or too powerful
I Talk: No new results, short series of remarks based on old

contributions

A hierarchy of counting problems

]·C: the classes of all witness functions R that satisfy the
following conditions:

1. There is a polynomial p, such that for each input x and each
y ∈ R(x), the relation |y| ≤ p(|x|) holds.

2. The decision problem
Given x and y, does the relation y ∈ R(x) hold?

is in the class C.

It holds : FP ⊆]·P ⊆]·NP ⊆]·coNP

Remark:]P =]·P

The difficulty to define reductions

I Karp reduction (parsimonious: special case):

I #SAT complete for]·P, generalization of #SAT for higher
classes.

The difficulty to define reductions

I Turing reduction

I #PerfectMatching complete for]·P under Turing reduction.

Motivations

I There are counting problems that seem to reside above the
class]·P:
#Hilbert, #Circumscription, #CQ (conjunctive queries)

I Toda and Watanabe (1992) :]·PH ⊆ P]P.
Bad news: The counting classes are not closed under the
Turing reductions.

Motivations

I Karp reductions or parsimonious reductions are insufficient to
prove complete problems for counting classes
Common folklore: there exists seemingly hard counting
problems (e.g. #PerfectMatching) whose underlying decision
problem is easy. So no reduction based on a direct mapping of
the solution set is enough to capture all hard problems.

I Interesting to design reduction technics under which counting
classes are closed

I Need to map solution sets in a indirect way (not too indirect
though)

Multisets

Let D be a nonempty domain. Multiset M is a function
M : D → N that assigns to each input x its number of occurrences
M(x) in M .
Operations on multisets
Union: (A⊕B)(x) = A(x) + B(x) for each x ∈ D
Difference: (A	B)(x) = max(A(x)−B(x), 0)

Observation
(A	B)(x) = A(x)−B(x) holds for each x ∈ D if B ⊆ A.

A1 ⊕ · · · ⊕An is denoted by
⊕n

i=1 Ai

Subtractive reductions

Let R be a binary predicate and #R the associated counting
problem that computes the cardinality of the set R(x).

Definition (D., Hermann, Kolaitis’00-05)
The counting problem #A reduces to the problem #B by a
subtractive reduction, if there exist polynomial-time computable
functions fi and gi, i = 1, . . . , n, such that the following
conditions hold for the predicates A and B:

I
⊕n

i=1 B(fi(x)) ⊆
⊕n

i=1 B(gi(x)),
I |A(x)| =

∑n
i=1 |B(gi(x))| −

∑n
i=1 |B(fi(x))|.

Simpler useful form

Definition
The counting problem #A reduces to the problem #B by a
subtractive reduction, if there exist polynomial-time computable
functions f and g, such that the following conditions hold for the
predicates A and B:

I B(f(x)) ⊆ B(g(x)),
I |A(x)| = |B(g(x))| − |B(f(x))|.

Other variants (such as complementive reductions) defined by
Bauland and al.

Properties

Property
The subtractive reductions are transitive (only the general case).

Property
For each k ∈ N, the class]·ΠkP (in particular]·P) is closed under
the subtractive reductions for each k. It is not the case of]·ΣkP
classes.

Subtractive reduction are weaker than Turing reductions (but
stronger than parsimonious ones).
Can we prove some interesting problem is hard under this
reduction?

Complete problems - Some examples

I #DNF: count the models of a DNF propositional formula
(in]P)

I #Circumscription: count the minimal (or the pointwise
ordering) models of a propositional formulas (in]·coNP)

I #CQ: count the number of tuples solutions of a conjunctive
queries (with projections) (in]·NP)

Under some reasonable complexity assumption: none of them can
be proved complete for the corresponding class.
However :

I #DNF is]P-complete for subtractive reduction (obvious)
I #Circumscription is]·coNP-complete for sub. red. (DHK’00)
I #CQ is]·NP-complete for complementive reduction

(Bauland and al’)

Remarks

I The approach is powerful for proving hardness of some natural
counting problems

I However, not clear if it can substitute to Turing reductions for
most classical problems (e.g. #PerfectMatching)

I If yes, it would probably provide some interesting insight on
the nature of counting problems.

Concluding remarks

I The reductions above are based on a more general principle of
polynomial time witness reductions (D, Hermann, Wagner)
where A ≤w B if (roughly speaking) there exists a polytime
function f , polynomial time predicate D1, ..., Dm and a
(∩,∪,¬)-formula F such that, for all x

A(x) = F (B(f(x)), D1(x), ..., Dm(x)))
I Depending on the choice of F (monotone, affine, conjunctive,

disjunctive, etc): different closure properties for counting (but
also enumeration, approximation etc) can be obtained

I Makes sense for smaller counting classes also

	Introduction

