Revisiting the c2d Knowledge Compiler

Adnan Darwiche

Computer Science Department

UCLA

The c2d knowledge compiler

- Compiles CNF into Decision-DNNF (+ other utilities)
- Released a real while back!
- Upcoming release: c2d version 3.0 (significant re-write of code)
- ACE uses various c2d options (some hidden, not in c2d manual).

reasoning.cs.ucla.edu/ace

Durgesh Agrawal, Yash Pote, Kuldeep S. Meel: Partition Function Estimation: A Quantitative Study. IJCAI-21

Problem Classes									
Method Name	Relation-	Prome-	BN	Ising	Segment	ObjDetect	Protein	Misc	Total
	al (354)	das (65)	(60)	(52)	(50)	(35)	(29)	(27)	(672)
Ace	354	65	60	51	50	0	16	15	611
Fractional Belief Propagation (FBP)	293	65	58	41	48	32	29	9	575
Loopy Belief Propagation (BP)	292	65	58	41	46	32	29	10	573
Generalized Belief Propagation (GBP)	281	65	36	47	40	34	29	9	541
Edge Deletion Belief Propagation (EDBP)	245	42	56	50	49	35	28	23	528
GANAK	353	58	53	4	0	0	7	14	489
Double Loop Generalised BP (HAK)	199	65	58	43	43	35	29	14	486
Tree Expectation Propagation (TREEEP)	101	65	58	50	48	35	29	15	401
SampleSearch	89	56	33	52	37	35	29	25	356
Bucket Elimination (BE)	98	32	15	52	50	35	29	22	333
Conditioned Belief Propagation (CBP)	109	32	21	41	50	35	29	8	325
Join Tree (JT)	98	32	15	52	50	19	26	21	313
Dynamic Importance Sampling (DIS)	24	65	25	52	50	35	29	27	307
Weighted Mini Bucket Elimination (WMB)	68	13	17	50	50	20	28	12	258
miniC2D	187	1	30	31	0	0	0	1	250
WeightCount	93	0	27	0	0	0	0	0	120
WISH	0	0	0	9	0	0	0	0	9
FocusedFlatSAT	6	0	0	0	0	0	0	0	6

Decomposition Strategy

- dtree: decomposition tree
- Has width (corresponds to treewidth)
- Two methods: minfill (fast), hypergraph partitioning (slow)
- Released version: 32-bit/hmetis
- Upcoming version 3.0: 64-bit/PaToH, new heuristic that chooses between previous two methods

Adnan Darwiche:

Modeling and Reasoning with Bayesian Networks. Cambridge University Press 2009,

Formula caching

Decision-DNNF

Formula Caching

- Var is relevant in (sub)dtree iff appears in unsubsumed clause of dtree
- If var is relevant, capture its state: true, false, free
- Need two bits for each var in CNF of (sub)dtree
- Cache key is a bit vector (two bits per var)
- Less complete than D4 caching scheme, but appears more space/time efficient (now experimenting with D4 caching scheme)
- Cache only before starting to decompose the CNF of a dtree node

Model Counting (on Decision-DNNF)

- Exact model counting (MC) using long integers (gmp)
- Exact weighted model counting (WMC) using rationals (gmp)
- Requires smoothing Decision-DNNF which can be a space bottleneck
- Exact model counting using rationals (no smoothing needed):
 - Each literal has weight 1/2
 - Multiply weighted model count by number of variable instantiations

New Feature in c2d v3.0?

Oztok & Darwiche, arXiv 2017

• Decomposability with general determinism

or

• Decomposability without determinism

• Perhaps infrastructure that opens path for exploring heuristics for auxiliary variables

 \mathbf{X}_{1}

 X_2

or

Thank You

YouTube Channel

Branching on Formulas

A Perspective from Knowledge Compilation