
Caching in Model Counters:

A Journey through Space and Time

Jeroen G. Rook1∗, Anna L. D. Latour1, Holger H. Hoos1,2, and Siegfried Nijssen3

1 Leiden University, Leiden, The Netherlands
2 University of British Columbia (UBC), Vancouver, Canada

3 UCLouvain, Louvain-la-Neuve, Belgium

1 Motivation

DPLL-style exact model counters have become
increasingly fast in solving #SAT problems,
due to new branching heuristics [7, 3], clause
learning [6], and component caching [1, 2]. In
this work, we aim to contribute to this last line
of work on model counters.

A DPLL-based model counter induces a
depth-first search tree by assigning truth val-
ues to variables in a propositional input for-
mula (typically in CNF). At any node in the
search tree, the truth assignments to variables
may yield a residual formula that can be de-
composed into disjoint subformulae (compo-
nents) that do not have any variables in com-
mon. The model counts of these components
are therefore independent of their sibling com-
ponents. Caching the model counts of com-
ponents helps a DPLL-style model counter to
avoid recomputing the model count of subfor-
mulae that are encountered at multiple points
in the search tree.

We observe that memory is typically a lim-
ited resource, that the number of components
of a formula can be exponential in the num-
ber of variables in the input CNF, and thus
that the cache will eventually be exhausted
for sufficiently large problems. Consequently,
model counters usually clean their cache regu-
larly, to make room for storing new component
counts. Intuitively, we would assume that the
more memory we make available to the counter
to cache these component model counts, the
faster it will compute the total model count of
the input formula, since a larger cache allows
for more counts stored at the same time, and
thus a higher chance that a component’s count

∗Corresponding author j.g.rook@umail.leidenuniv.nl.

is stored there and a cache hit occurs.
Interestingly, in an empirical evaluation of

state-of-the-art DPLL-based model counter
GANAK [9], it was found that the running
time performance of GANAK does not vary
much when we limit it to a very small cache,
compared to giving it access to a much larger
cache. In this work we investigate the reasons
for this; specifically, we aim to answer the
following questions:
Q1 How does the running time of GANAK re-

late to the cache size limit?

Q2 How do branching heuristics and cache
management schemes influence the
counter’s interaction with the cache?

Q3 To what extent can we predict the rele-
vance of a component’s stored count, and
use that knowledge to craft new cache
management schemes?

2 Approach and results

For our analysis, we used two synthetic bench-
mark sets, DQMR and GRID [8], as well as
one industrial benchmark set, PA [5].

In order to answer our research questions, we
built tracking functionality into GANAK that
allows us to follow components as they are en-
countered at different times during the search.
We used this information to carefully map the
cache usage of GANAK under different circum-
stances.

We traced cache usage both for the default
settings of GANAK, and for other branching
heuristics, which have a great influence on the
size and shape of the search tree and therefore
can be suspected to also impact the way the
counter uses the cache, and other cache man-
agement schemes, which determine how the

mailto:j.g.rook@umail.leidenuniv.nl

Caching in Model Counters: A Journey through Space and Time J.G. Rook et al.

100

105

r(c
)

PAR10: 16
t/o: 0 100

101
102
103
104
105
106

Count

(a) VSIDS

100 102 104 106

Ne(c)

100

105

r(c
)

PAR10: 3285
t/o: 32 100

101
102
103
104
105
106

Count

(b) AUPC

Figure 1: Relevance window length (`r(c)) as
a function of number of encounters (Ne(c)) for
components sampled from GRID instances.

cache is cleaned when it is full.
In order to conduct a fair comparison, we

made GANAK highly configurable by parame-
terising magic constants and implementing ad-
ditional branching heuristics and cache man-
agement schemes that were either known from
the literature [7, 3, 11, 2] or crafted by us.
We then used automated algorithm configura-
tion (AAC) [4] to find benchmark-specific, op-
timised configurations for the parameters that
were not fixed in our experiments.

We used this configurable version of GANAK
to run a simple first experiment, in which we
only fixed the maximum allowed cache size,
and used AAC to find optimised parameter
values. Answering Q1, we found that with the
default parameter settings for GANAK as well
as with the optimised ones, the influence of
the cache size on running time performance,
measured in terms of PAR101, was minimal.
Doubling the cache size yielded at most a 28%
speed up, but on average this was only 1.5%.

1Penalised average running time with penalty fac-
tor 10.

Figure 1 shows an example of a typical re-
sult from our experiments to answer Q2. Here,
we limited the cache size to a maximum of
64 MB, fixed the branching heuristic to either
VSIDS [7] or AUPC [7], used AAC to find opti-
mised parameter settings for the other param-
eters and then measured for each component c
how often GANAK encounters it in the search
tree (Ne(c)) and how long it is ‘relevant’, i.e.,
how much time passed between the first and
last encounter, measured in the number of
decision nodes created in that time (`r(c)).
Analysing the data, we find that for the best
performing branching heuristic, VSIDS, there
are more component encounters and that the
components are relevant for shorter time peri-
ods, compared to the worst performing branch-
ing heuristic, AUPC.

Answering just one aspect of Q2, we found
that, regardless of branching heuristic, the dis-
tributions of Ne(c) follow a power law; this
means that most components are only encoun-
tered once by GANAK. Herein lies an oppor-
tunity to improve cache management heuris-
tics, because the counts of those components
are stored in the cache, taking up space that
could have been used to store model counts of
components that could lead to cache hits.

Interestingly, we find that the branching
heuristics that yield the smallest PAR10 val-
ues are the ones for which the solver finds rela-
tively more components that are only relevant
for very short periods of time (and thus for
very small parts of the search tree). We take
this as indication that such branching heuris-
tics yield small search trees. It also explains
why fairly simple cache management schemes,
such as first-in-first-out, are likely to perform
quite well. While this may be somewhat unsur-
prising, we believe that a study of a solver’s in-
teraction with the cache may yield interesting
insights towards developing branching heuris-
tics and caching schemes that form successful
duos in reducing the running time of the solver.

Finally, inspired by Soos et al. [10], we took
a machine learning approach to answering Q3.
We used the aforementioned tracking function-
ality to construct a database of feature vec-

2

Caching in Model Counters: A Journey through Space and Time J.G. Rook et al.

tors that capture for each tracked component
information about its structure (e.g., number
of variables and number of Horn clauses) and
the search state at the first time that it was
encountered by the solver (e.g., depth in the
search tree and polarity of decisions). We com-
bined these feature vectors with labels that
each capture a proxy of a component’s rele-
vance, and use the resulting database to train
binary classifiers to determine whether or not
we should evict a stored component from the
cache.

We evaluated the quality of these classifiers
using the area under the precision-recall curves
on the validation partition of our database.
We found that all classification approaches im-
prove over the baseline, which labelled all com-
ponents as relevant, by at least a factor two.
For the tasks where the threshold for being
considered as relevant is the highest, the im-
provements even go up to an order of mag-
nitude. Looking at the importance of the dif-
ferent features, we found that simple features
that capture, for instance, the size of the com-
ponent, have the most predictive power in this
task.

3 Conclusion

We performed an extensive study of a state-
of-the-art DPLL-style model counter, focusing
on the role that component caching plays in re-
ducing the running time of such model coun-
ters. Our results provide leads for future re-
search aiming to develop novel cache manage-
ment schemes designed to maximise the use
of the cache, and thus to be not only faster,
but also less reliant on limited memory re-
sources. Specifically, we suggest that efforts
to improve cache management should focus on
reducing the number of single-encounter com-
ponents whose counts are stored in the cache.

So far, we have considered components indi-
vidually, divorced from their role as super- or
sub-components of other components. Taking
these relationships into account in the devel-
opment of new cache management schemes is
an interesting direction for future research.

References

[1] Bacchus, F., Dalmao, S., Pitassi, T.: DPLL
with caching: A new algorithm for #SAT
and Bayesian inference. Electron. Colloquium
Comput. Complex 10(003) (2003)

[2] Beame, P., Impagliazzo, R., Pitassi, T.,
Segerlind, N.: Memoization and DPLL: for-
mula caching proof systems. In: Computa-
tional Complexity Conference. pp. 248–259.
IEEE Computer Society (2003)

[3] Bliem, B., Järvisalo, M.: Centrality heuristics
for exact model counting. In: ICTAI. pp. 59–
63. IEEE (2019)

[4] Hoos, H.H.: Automated algorithm configura-
tion and parameter tuning. In: Autonomous
Search, pp. 37–71. Springer (2012)

[5] Möhle, S., Ge, C., Biere, A.: Program anal-
ysis benchmarks submitted to the model
counting competition mc 2020 (2020), www.

mccompetition.org, retrieved Aug. 2020

[6] Sang, T., Bacchus, F., Beame, P., Kautz,
H.A., Pitassi, T.: Combining component
caching and clause learning for effective
model counting. In: presented at SAT.
p. 9 (2004), http://www.satisfiability.

org/SAT04/programme/21.pdf

[7] Sang, T., Beame, P., Kautz, H.A.: Heuristics
for fast exact model counting. In: SAT. Lec-
ture Notes in Computer Science, vol. 3569,
pp. 226–240. Springer (2005)

[8] Sang, T., Beame, P., Kautz, H.A.: Performing
Bayesian inference by weighted model count-
ing. In: AAAI. pp. 475–482. AAAI Press /
The MIT Press (2005)

[9] Sharma, S., Roy, S., Soos, M., Meel, K.S.:
GANAK: A scalable probabilistic exact
model counter. In: IJCAI. pp. 1169–1176. ij-
cai.org (2019)

[10] Soos, M., Kulkarni, R., Meel, K.S.: Crystal-
ball: Gazing in the black box of SAT solving.
In: SAT. Lecture Notes in Computer Science,
vol. 11628, pp. 371–387. Springer (2019)

[11] Thurley, M.: sharpSAT - counting mod-
els with advanced component caching and
implicit BCP. In: SAT. Lecture Notes in
Computer Science, vol. 4121, pp. 424–429.
Springer (2006)

3

www.mccompetition.org
www.mccompetition.org
http://www.satisfiability.org/SAT04/programme/21.pdf
http://www.satisfiability.org/SAT04/programme/21.pdf

	Motivation
	Approach and results
	Conclusion

