
SharpSAT-TD Participating in Model Counting Competition 2021

Tuukka Korhonen Matti Järvisalo

HIIT, Department of Computer Science, University of Helsinki, Finland∗

May 30, 2021

Abstract

We describe SharpSAT-TD, our submission to the unweighted and weighted tracks of Model Counting Compe-
tition 2021. SharpSAT-TD is based on SharpSAT, with the primary novel modification being the use of tree
decompositions in decision heuristics.

1 Overview

SharpSAT-TD is based on the exact model counter SharpSAT [7], from which it inherits the basic structure of search-
based model counter with clause learning, component analysis, and component caching. The main new feature in
SharpSAT-TD is that we compute a tree decomposition of the input formula with the FlowCutter algorithm [2, 6],
and integrate the tree decomposition to the decision heuristic of the counter. Another significant new feature is a
new preprocessor. Further, SharpSAT-TD extends SharpSAT by directly supporting weighted model counting.

2 Integrating Tree Decompositions into the Decision Heuristic

We compute a tree decomposition of the primal graph of the input formula with the anytime FlowCutter algorithm [2,
6], always using 120 seconds in the computation. We select one node of the tree decomposition as a root so that the
bag of the root is a 1/2-balanced separator of the primal graph.

In SharpSAT, the variable selection heuristic is based on frequency and activity scores, in particular, for each
variable x scores freq(x) and act(x) are maintained, and the variable with highest score(x) = freq(x) + act(x)
is selected. We add a tree decomposition based term to this score. In particular, in SharpSAT-TD the variable
selection done using

score(x) = freq(x) + act(x)− C · d(x),

where d(x) denotes the distance in the tree decomposition from the root node to a closest node whose bag contains
x (normalized to the interval [0 . . . 1]), and C is some positive constant. In particular, this score prefers variables
that are closer to the root in the tree decomposition. The constant C is selected as C = 100 exp(n/w)/n, where w is
the width of the tree decomposition and n is the number of variables. Note that this makes the tree decomposition
based score more significant when w is smaller.

3 Preprocessing

We implement a new preprocessor completely from scratch. The preprocessing is done before computing the tree
decomposition, and one of the goals of the preprocessing is to decrease the treewidth of the formula. The preprocessing
techniques used, in the order of application, are propagation-based vivification, complete vivification, sparsification,
equivalence merging, and B+E [3, 4].

In propagation-based vivification, for each clause c and a literal l in c we check if ¬(c \ {l}) implies UNSAT via
unit propagation, and if yes we strenghten c by removing l from it. In complete vivification we do the same, but the
UNSAT check is done by a complete SAT-solver. The SAT-solver is also a new implementation. Note that complete
vivification also results in backboning the formula. In sparsification we attempt to remove clauses that are implied
by other clauses. The redundancy of a clause is checked with a SAT-solver. The goal of sparsification is to reduce
treewidth. In equivalence merging we merge two variables if they are equivalent and they are adjacent in the primal
graph. The equivalency is checked with a SAT-solver. Note that in the primal graph, merging two adjacent variables
corresponds to edge contraction, which does not increase treewidth. Finally, for unweighted formulas we re-implement
the B+E algorithm [3]. Our implementation of B+E is done in a way to ensure to not increase the treewidth of the

∗Work funded by Adacemy of Finland under grants 322869 and 328718.

1



formula. On some instances our implemention of B+E seems faster than the original, while eliminating the same
number of variables.

4 Further New Features and Modifications

We disabled the “implicit BCP” feature of SharpSAT because it decreased the overall number of public instances
solved in preliminary experiments, although we note that on some instances it appears useful.

We changed the SharpSAT learned clause scoring scheme into the LBD scheme [1]. This also fixed a bug of
SharpSAT where it does not delete any learned clauses if their median score is 0, which often happened. SharpSAT-
TD also changes the desired number of learned clauses stored based on their estimated usefullness, i.e., LBD scores.
In preliminary experiments it seems that these LBD score based techniques do not result in very significant effects
in the running times, but the bugfix sometimes does.

We implemented the probabilistic component caching scheme introduced in GANAK [5]. We note that even
though GANAK is also a SharpSAT-derivant, our implementation is different from the implementation of GANAK.
Also, in our implementation instead of having a dynamic hash-length we fix a hash-length of 128 bits, noting that
it results in a collision probability of < 10−9 on all cases where the counter does at most 1014 cache lookups (note
that doing more than 1014 cache lookups within the 3600 seconds time limit of the competition seems impossible on
the competition hardware).

5 Extension to Weighted Model Counting

While in principle it is clear that any model counter whose trace corresponds to a d-DNNF-compilation can be
extended to also weighted model counting, efficient implementation is not necessarily straightforward, and in the case
of SharpSAT required editing hundreds of lines of code. Our extension to weighted model counting is implemented via
template parameters, so changing the data types or the semiring that the counter works on is simple. In particular,
on some public instances of the weighted track of the competition there is an issue of underflow with the double-
precision floating point data type. In these instances we re-run the counter with a custom datatype that stores the
logarithm of the weighted model count.

References

[1] Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers. In IJCAI, pages
399–404, 2009.

[2] M. Hamann and B. Strasser. Graph bisection with pareto optimization. ACM J. Exp. Algorithmics, 23, 2018.

[3] J. Lagniez, E. Lonca, and P. Marquis. Improving model counting by leveraging definability. In IJCAI, pages
751–757. IJCAI/AAAI Press, 2016.

[4] Cédric Piette, Youssef Hamadi, and Lakhdar Sais. Vivifying propositional clausal formulae. In ECAI, volume
178 of Frontiers in Artificial Intelligence and Applications, pages 525–529. IOS Press, 2008.

[5] S. Sharma, S. Roy, M. Soos, and K. S. Meel. GANAK: A scalable probabilistic exact model counter. In IJCAI,
pages 1169–1176. ijcai.org, 2019.

[6] B. Strasser. Computing tree decompositions with FlowCutter: PACE 2017 submission. CoRR, abs/1709.08949,
2017.

[7] M. Thurley. sharpSAT - Counting models with advanced component caching and implicit BCP. In SAT, volume
4121 of LNCS, pages 424–429. Springer, 2006.

2


