
On the Approximability of Weighted
Model Integration over DNF Structures [1]

Ralph Abboud, İsmail İlkan Ceylan, Radoslav Dimitrov

09 July 2020 MCW@SAT2020

2

Weighted Model Counting

𝜙 propositional formula

2

Weighted Model Counting

𝜙 propositional formula

𝑤:𝒜 𝜙 → ℝ weight function

2

Weighted Model Counting

𝜙 propositional formula

𝑤:𝒜 𝜙 → ℝ weight function

WMC 𝜙 *
!⊨#

𝑤(𝜙)

2

Weighted Model Counting

𝜙 propositional formula

𝑤:𝒜 𝜙 → ℝ weight function

WMC 𝜙 *
!⊨#

𝑤(𝜙)

Applications

Probabilistic Graphical Models Probabilistic Logic Programming

Probabilistic Databases Probabilistic Knowledge Bases

3

Weighted Model Integration

- Weighted model counting only applies over discrete variables.

3

Weighted Model Integration

- Weighted model counting only applies over discrete variables.

- Inspired by SMT, Weighted model integration generalizes weighted
model counting over discrete and continuous variables.

3

Weighted Model Integration

- Weighted model counting only applies over discrete variables.

- Inspired by SMT, Weighted model integration generalizes weighted
model counting over discrete and continuous variables.

Χ set of n real variables

3

Weighted Model Integration

- Weighted model counting only applies over discrete variables.

- Inspired by SMT, Weighted model integration generalizes weighted
model counting over discrete and continuous variables.

Χ set of n real variables

V set of m Boolean variables

4

Weighted Model Integration

𝑐$𝑥$ +…+ 𝑐% 𝑥% ⋈ c LRA Atom, 𝑥% ∈ Χ, ⋈∈ {<,≤,>,≥,=,≠}

4

Weighted Model Integration

𝑐$𝑥$ +…+ 𝑐% 𝑥% ⋈ c LRA Atom, 𝑥% ∈ Χ, ⋈∈ {<,≤,>,≥,=,≠}

atoms(Χ, V) propositional and LRA atoms over Χ ∪ V

4

Weighted Model Integration

𝑐$𝑥$ +…+ 𝑐% 𝑥% ⋈ c LRA Atom, 𝑥% ∈ Χ, ⋈∈ {<,≤,>,≥,=,≠}

atoms(Χ, V) propositional and LRA atoms over Χ ∪ V

𝜙 propositional formula over 𝛸 ∪ V

4

Weighted Model Integration

𝑐$𝑥$ +…+ 𝑐% 𝑥% ⋈ c LRA Atom, 𝑥% ∈ Χ, ⋈∈ {<,≤,>,≥,=,≠}

atoms(Χ, V) propositional and LRA atoms over Χ ∪ V

𝜙 propositional formula over 𝛸 ∪ V

𝑤: ℝ&×𝔹' → ℝ weight function over 𝛸 ∪ V

4

Weighted Model Integration

𝑐$𝑥$ +…+ 𝑐% 𝑥% ⋈ c LRA Atom, 𝑥% ∈ Χ, ⋈∈ {<,≤,>,≥,=,≠}

atoms(Χ, V) propositional and LRA atoms over Χ ∪ V

𝜙 propositional formula over 𝛸 ∪ V

WMI 𝜙 *
!

I
(!

𝑤 𝑥, 𝑣 𝑑𝑥

where 𝑣 is a Boolean assignment over V, 𝑥# denotes valuations of Χ satisfying 𝜙.

𝑤: ℝ&×𝔹' → ℝ weight function over 𝛸 ∪ V

5

Weighted Model Integration: Weight Function

5

Weighted Model Integration: Weight Function

𝑤: ℝ&×𝔹' → ℝ weight function over 𝛸 ∪ V

5

Weighted Model Integration: Weight Function

𝑤: ℝ&×𝔹' → ℝ weight function over 𝛸 ∪ V

5

Weighted Model Integration: Weight Function

𝑤: ℝ&×𝔹' → ℝ weight function over 𝛸 ∪ V

For weight functions in WMI, it is common to factorize [2] 𝑤 as a product of m
Boolean literal weights and a density function over real variables, i.e.,:

𝑤 𝑥, 𝑣 = 𝑤! 𝑥 .
"#$

%

𝑤& 𝑝" .

6

Special Cases

𝑥 ∨ 𝑦 ∧ (𝑦 ∨ 𝑧) Conjunctive Normal Form (CNF)

6

Special Cases

𝑥 ∨ 𝑦 ∧ (𝑦 ∨ 𝑧) Conjunctive Normal Form (CNF)

𝑥 ∧ 𝑦 ∨ (𝑦 ∧ 𝑧) Disjunctive Normal Form (DNF)

6

Special Cases

𝑥 ∨ 𝑦 ∧ (𝑦 ∨ 𝑧) Conjunctive Normal Form (CNF)

𝑥 ∧ 𝑦 ∨ (𝑦 ∧ 𝑧) Disjunctive Normal Form (DNF)

Special cases WMI(CNF), WMI(DNF)

6

Special Cases

𝑥 ∨ 𝑦 ∧ (𝑦 ∨ 𝑧) Conjunctive Normal Form (CNF)

𝑥 ∧ 𝑦 ∨ (𝑦 ∧ 𝑧) Disjunctive Normal Form (DNF)

Special cases WMI(CNF), WMI(DNF)

Both WMI and WMC are #P-hard for exact solving. Hence, we study
WMI within the context of approximate solving.

7

Approximation Hardness

How hard is it to approximate WMI(CNF) and WMI(DNF)?

7

Approximation Hardness

How hard is it to approximate WMI(CNF) and WMI(DNF)?

8

Result:
Show that WMI(DNF) admits an FPRAS for concave

weight functions

Result builds on existing FPRAS algorithms for WMC(DNF) and volume computation for the union of convex bodies

9

ApproxUnion: Volume of Union of Convex Bodies [5]
Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

Run until Step 4 executes T times:

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

2 Randomly sample body
sampling probabilities proportional to body volume

Run until Step 4 executes T times:

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

2 Randomly sample body
sampling probabilities proportional to body volume

Run until Step 4 executes T times:

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

2 Randomly sample body
sampling probabilities proportional to body volume

3 Uniformly sample point in body

Run until Step 4 executes T times:

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

2 Randomly sample body
sampling probabilities proportional to body volume

3 Uniformly sample point in body

Run until Step 4 executes T times:

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

2 Randomly sample body
sampling probabilities proportional to body volume

3 Uniformly sample point in body

4 Uniformly sample another body
If sampled point in this body, Success!
Repeat Step 2, Else repeat Step 4.

Run until Step 4 executes T times:

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

2 Randomly sample body
sampling probabilities proportional to body volume

3 Uniformly sample point in body

4 Uniformly sample another body
If sampled point in this body, Success!
Repeat Step 2, Else repeat Step 4.

Run until Step 4 executes T times:

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

2 Randomly sample body
sampling probabilities proportional to body volume

3 Uniformly sample point in body

4 Uniformly sample another body
If sampled point in this body, Success!
Repeat Step 2, Else repeat Step 4.

Run until Step 4 executes T times:

Consider k convex bodies. We wish to compute the volume of their union.

9

ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

2 Randomly sample body
sampling probabilities proportional to body volume

3 Uniformly sample point in body

4 Uniformly sample another body
If sampled point in this body, Success!
Repeat Step 2, Else repeat Step 4.

Run until Step 4 executes T times:

Consider k convex bodies. We wish to compute the volume of their union.

Number of successes then yields an unbiased estimator for volume

10

ApproxUnion is an FPRAS

1 Volume Computation: FPRAS with error 𝜖1, confidence 𝛿1

2 Point Sampling: FPRAS with error 𝜖2, confidence 𝛿2

3 Membership Check: FPRAS with error 𝜖3, confidence 𝛿3

10

ApproxUnion is an FPRAS

1 Volume Computation: FPRAS with error 𝜖1, confidence 𝛿1

2 Point Sampling: FPRAS with error 𝜖2, confidence 𝛿2

3 Membership Check: FPRAS with error 𝜖3, confidence 𝛿3

ApproxUnion is an FPRAS with error 𝜀 and confidence 𝛿, using T = 𝑂(𝑘𝜀45) ,

for 𝜀1, 𝜀2 ≤ 6"

789
, 𝜀3 ≤

6"

789"
, 𝛿1 ≤

:
79
, 𝛿2 + 𝛿3 ≤

:
558; <=(#$)

%
&"

.

11

ApproxWMI: An FPRAS for WMI(DNF)

11

ApproxWMI: An FPRAS for WMI(DNF)
- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

11

ApproxWMI: An FPRAS for WMI(DNF)
- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

w(x)

x

11

ApproxWMI: An FPRAS for WMI(DNF)
- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

w(x)

x

- ApproxWMI:

11

ApproxWMI: An FPRAS for WMI(DNF)
- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

w(x)

x

- ApproxWMI:
1) Computes the weight of every DNF clause: weight function integral
over LRA-induced convex polytope, multiplied by Boolean probabilities.

11

ApproxWMI: An FPRAS for WMI(DNF)
- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

w(x)

x

- ApproxWMI:
1) Computes the weight of every DNF clause: weight function integral
over LRA-induced convex polytope, multiplied by Boolean probabilities.
2) Samples points from a clause as per the weight function.

11

ApproxWMI: An FPRAS for WMI(DNF)
- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

w(x)

x

- ApproxWMI:
1) Computes the weight of every DNF clause: weight function integral
over LRA-induced convex polytope, multiplied by Boolean probabilities.
2) Samples points from a clause as per the weight function.
3) Checks membership of point to another uniformly random clause.

ApproxWMI: Computing Clause Weight

12

ApproxWMI: Computing Clause Weight
- In a DNF clause, LRA atoms define a convex polytope.

12

ApproxWMI: Computing Clause Weight
- In a DNF clause, LRA atoms define a convex polytope.
- The integral of 𝑤(𝑥 over this polytope, multiplied by the probabilities of

clause Boolean literals, yields the clause weight.

12

ApproxWMI: Computing Clause Weight
- In a DNF clause, LRA atoms define a convex polytope.
- The integral of 𝑤(𝑥 over this polytope, multiplied by the probabilities of

clause Boolean literals, yields the clause weight.
- Since 𝑤(𝑥 is concave, the integral can be computed as the volume of a

combined n+1-dimensional convex polytope, e.g.,:
𝑤!(𝑥)

𝑥

2D Convex Polytope Concave Weight Function

+

12

ApproxWMI: Computing Clause Weight
- In a DNF clause, LRA atoms define a convex polytope.
- The integral of 𝑤(𝑥 over this polytope, multiplied by the probabilities of

clause Boolean literals, yields the clause weight.
- Since 𝑤(𝑥 is concave, the integral can be computed as the volume of a

combined n+1-dimensional convex polytope, e.g.,:
𝑤!(𝑥)

𝑥

2D Convex Polytope Concave Weight Function

+ à

3D Convex Polytope 12

ApproxWMI: Computing Clause Weight

13

𝑤!(𝑥)

𝑥

2D Convex Polytope Concave Weight Function

+ à

3D Convex Polytope

ApproxWMI: Computing Clause Weight
- The volume of this polytope is then computed using standard tools [6].

13

𝑤!(𝑥)

𝑥

2D Convex Polytope Concave Weight Function

+ à

3D Convex Polytope

ApproxWMI: Computing Clause Weight
- The volume of this polytope is then computed using standard tools [6].
- This volume is multiplied by Boolean probabilities to return clause weight.

13

𝑤!(𝑥)

𝑥

2D Convex Polytope Concave Weight Function

+ à

3D Convex Polytope

ApproxWMI: Sampling Points and Checking Membership
- The n+1-dimensional polytope is sampled uniformly, as a proxy for sampling the

original polytope according to the weight function.

3D Convex Polytope

14

ApproxWMI: Sampling Points and Checking Membership
- The n+1-dimensional polytope is sampled uniformly, as a proxy for sampling the

original polytope according to the weight function.

3D Convex Polytope

14

ApproxWMI: Sampling Points and Checking Membership
- The n+1-dimensional polytope is sampled uniformly, as a proxy for sampling the

original polytope according to the weight function.

3D Convex Polytope

14

ApproxWMI: Sampling Points and Checking Membership
- The n+1-dimensional polytope is sampled uniformly, as a proxy for sampling the

original polytope according to the weight function.

3D Convex Polytope

14

- Membership to LRA polytope is checked by validating
point against every LRA atom in a clause.

ApproxWMI is an FPRAS for WMI(DNF)

1 ClauseWeight: FPRAS with error 𝜖1, confidence 𝛿1

2

3

Sampling: FPRAS with error 𝜖2, confidence 𝛿2

Evaluate: FPRAS with error 𝜖3, confidence 𝛿3

15

ApproxWMI is an FPRAS for WMI(DNF)

1 ClauseWeight: FPRAS with error 𝜖1, confidence 𝛿1

2

3

Sampling: FPRAS with error 𝜖2, confidence 𝛿2

Evaluate: FPRAS with error 𝜖3, confidence 𝛿3

ApproxWMI is an FPRAS for WMI(DNF) with error 𝜀 and confidence 𝛿, using

T = 𝑂(𝑘𝜀45) , for 𝜀1, 𝜀2 ≤ 6"

789 , 𝜀3 ≤
6"

789", 𝛿1 ≤
:
79 , 𝛿2 + 𝛿3 ≤

:
558; <=(#$)

%
&"

.

15

Experimental Setup: Data Generation

16

Experimental Setup: Data Generation
- Randomly generated DNF instances, with equally many Boolean and real variables.

Total number of variables uniformly set between 100 and 1000 in increments of 100.

16

Experimental Setup: Data Generation
- Randomly generated DNF instances, with equally many Boolean and real variables.

Total number of variables uniformly set between 100 and 1000 in increments of 100.

- Clause width uniformly set between 3,5,8, and 13.

16

Experimental Setup: Data Generation
- Randomly generated DNF instances, with equally many Boolean and real variables.

Total number of variables uniformly set between 100 and 1000 in increments of 100.

- Clause width uniformly set between 3,5,8, and 13.

- Number of clauses is roughly the number of variables divided by clause width.

16

Experimental Setup: Data Generation
- Randomly generated DNF instances, with equally many Boolean and real variables.

Total number of variables uniformly set between 100 and 1000 in increments of 100.

- Clause width uniformly set between 3,5,8, and 13.

- Number of clauses is roughly the number of variables divided by clause width.

- Real weight function is a concave polynomial with degree up to 5.

16

Experimental Setup: ApproxWMI

17

Experimental Setup: ApproxWMI

17

- Exact weight computation oracle: Faster due to small clause widths.

Experimental Setup: ApproxWMI

17

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7], with practically used constant iteration factor.

Experimental Setup: ApproxWMI

17

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:

Experimental Setup: ApproxWMI

- Target error 𝜖: Set to 0.15, 0.25, and 0.35.

17

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:

Experimental Setup: ApproxWMI

- Target error 𝜖: Set to 0.15, 0.25, and 0.35.

- Target confidence 𝛿: Set to 0.05, 0.15 and 0.25.

17

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:

Results

18

Results

18

Results

18

Summary

19

Summary

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

19

Summary

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables,
which is out of reach for existing WMI solvers.

19

Summary

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables,
which is out of reach for existing WMI solvers.

- ApproxWMI can be extended to more general factorizations enabling real-Boolean
dependency.

19

Summary

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables,
which is out of reach for existing WMI solvers.

- ApproxWMI can be extended to more general factorizations enabling real-Boolean
dependency.

- ApproxWMI is a useful tool for efficient probabilistic inference in hybrid domains.

19

22

Thank You!

23

Selected References
[1] Abboud, R.; Ceylan, İ; and Dimitrov, R. 2020. On the approximability of weighted model integration
on DNF structures. To appear in Proc. of KR.
[2] Martires, P.; Dries, A.; and De Raedt, L. 2019. Exact and approximate weighted model integration
with probability density functions using knowledge compilation. In Proc. of AAAI, 7825–7833
[3] Roth, D. 1996. On the Hardness of Approximate Reasoning. AIJ 82(1-2):273–302
[4] Karp, R. M.; Luby, M.; and Madras, N. 1989. Monte-Carlo approximation algorithms for
enumeration problems. J. Algorithms 10(3):429–448
[5] Bringmann, K., and Friedrich, T. 2010. Approximating the volume of unions and intersections of
high-dimensional geometric objects. Comput. Geom. 43(6-7):601–610.
[6] Lovasz, L., and Vempala, S. S. 2006. Simulated annealing in convex bodies and an O∗ (n4) volume
algorithm. JCSS 72(2):392–417.
[7] Chen, M., and Schmeiser, B. W. 1996. General hit-and-run Monte Carlo sampling for evaluating
multidimensional integrals. Oper. Res. Lett. 19(4):161–169

