On the Approximability of Weighted Model Integration over DNF Structures [1]

Ralph Abboud, İsmail İlkan Ceylan, Radoslav Dimitrov

propositional formula

 ϕ $w: \mathcal{A}(\phi) \to \mathbb{R}$

propositional formula weight function

 ϕ

 $w: \mathcal{A}(\phi) \to \mathbb{R}$

 $WMC(\phi)$

propositional formula weight function

 ϕ $w: \mathcal{A}(\phi) \to \mathbb{R}$

 $WMC(\phi)$

Applications

- Probabilistic Graphical Models
- Probabilistic Databases

propositional formula

weight function

Probabilistic Logic Programming

Probabilistic Knowledge Bases

- Weighted model counting only applies over discrete variables.

- Weighted model counting only applies over discrete variables.
- Inspired by SMT, Weighted model integration generalizes weighted model counting over discrete and continuous variables.

- Weighted model counting only applies over discrete variables.
- Inspired by SMT, Weighted model integration generalizes weighted model counting over discrete and continuous variables.

Х

set of *n* real variables

- Weighted model counting only applies over discrete variables.
- Inspired by SMT, Weighted model integration generalizes weighted model counting over discrete and continuous variables.

X set of *n* real variables V set of *m* Boolean variables

 $c_1 x_1 + \ldots + c_i x_i \bowtie c$

LRA Atom, $x_i \in X$, $\bowtie \in \{<, \leq, >, \geq, =, \neq\}$

 $c_1 x_1 + \ldots + c_i x_i \bowtie c$

atoms(X, V)

LRA Atom, $x_i \in X$, $\bowtie \in \{<, \leq, >, \geq, =, \neq\}$

propositional and LRA atoms over X U V

 $c_1 x_1 + \ldots + c_i x_i \bowtie c$ atoms(X, V)

φ

LRA Atom, $x_i \in X$, $\bowtie \in \{<, \leq, >, \geq, =, \neq\}$

propositional and LRA atoms over X U V

propositional formula over $X \cup V$

 $c_1 x_1 + ... + c_i x_i \bowtie c$ LRA Atom, $x_i \in X, \bowtie \in \{<, \le, >, \ge, =, \neq\}$ atoms(X, V)propositional and LRA atoms over $X \cup V$ ϕ propositional formula over $X \cup V$ $w: \mathbb{R}^n \times \mathbb{B}^m \to \mathbb{R}$ weight function over $X \cup V$

$c_1 x_1 + \ldots + c_i x_i \bowtie c$	LRA Atom, $x_i \in X$, $\bowtie \in \{<, \le, >, \ge, =, \neq\}$
atoms(X, V)	propositional and LRA atoms over X U V
ϕ	propositional formula over $X \cup V$
$w: \mathbb{R}^n \times \mathbb{B}^m \to \mathbb{R}$	weight function over $X \cup V$

 $\sum_{\nu} \int_{x_{\phi}} w(x,\nu) \, dx$

 $WMI(\phi)$

where \boldsymbol{v} is a Boolean assignment over V, x_{ϕ} denotes valuations of X satisfying ϕ .

w: $\mathbb{R}^n \times \mathbb{B}^m \to \mathbb{R}$

weight function over $X \cup V$

w: $\mathbb{R}^n \times \mathbb{B}^m \to \mathbb{R}$

weight function over $X \cup V$

w: $\mathbb{R}^n \times \mathbb{B}^m \to \mathbb{R}$

weight function over $X \cup V$

For weight functions in WMI, it is common to factorize [2] *w* as a product of *m* Boolean literal weights and a density function over real variables, i.e.,:

$$w(x,v) = w_x(x) \prod_{i=1}^m w_b(p_i).$$

 $(x \lor y) \land (y \lor z)$

Conjunctive Normal Form (CNF)

 $(x \lor y) \land (y \lor z)$

 $(x \wedge y) \vee (y \wedge z)$

Conjunctive Normal Form (CNF)

Disjunctive Normal Form (DNF)

 $(x \lor y) \land (y \lor z)$

 $(x \wedge y) \vee (y \wedge z)$

Conjunctive Normal Form (CNF)

Disjunctive Normal Form (DNF)

Special cases WMI(CNF), WMI(DNF)

 $(x \lor y) \land (y \lor z)$

 $(x \land y) \lor (y \land z)$

Conjunctive Normal Form (CNF)

Disjunctive Normal Form (DNF)

Both WMI and WMC are **#P-hard** for exact solving. Hence, we study WMI within the context of approximate solving.

Approximation Hardness

How hard is it to approximate WMI(CNF) and WMI(DNF)?

Approximation Hardness

How hard is it to approximate WMI(CNF) and WMI(DNF)?

	WMC		WMI
CNF	NP-hard [3]		NP-hard
DNF	FPRAS [4]	➡	?

Result:

Show that WMI(DNF) admits an FPRAS for concave weight functions

Result builds on existing FPRAS algorithms for WMC(DNF) and volume computation for the union of convex bodies

Consider *k* convex bodies. We wish to compute the volume of their union.

Consider *k* convex bodies. We wish to compute the volume of their union.

Consider *k* convex bodies. We wish to compute the volume of their union.

Consider *k* convex bodies. We wish to compute the volume of their union.

Run until Step 4 executes T times:

Consider *k* convex bodies. We wish to compute the volume of their union.

Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body

sampling probabilities proportional to body volume

Consider *k* convex bodies. We wish to compute the volume of their union.

Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body

sampling probabilities proportional to body volume

Consider *k* convex bodies. We wish to compute the volume of their union.

Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body sampling probabilities proportional to body volume

Uniformly sample point in body

Consider *k* convex bodies. We wish to compute the volume of their union.

Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body sampling probabilities proportional to body volume

Uniformly sample point in body

Consider *k* convex bodies. We wish to compute the volume of their union.

Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body sampling probabilities proportional to body volume

Uniformly sample point in body

Uniformly sample another body

If sampled point in this body, Success! Repeat Step 2, Else repeat Step 4.

Consider *k* convex bodies. We wish to compute the volume of their union.

Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body sampling probabilities proportional to body volume

Uniformly sample point in body

Uniformly sample another body

If sampled point in this body, Success! Repeat Step 2, Else repeat Step 4.

Consider *k* convex bodies. We wish to compute the volume of their union.

Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body sampling probabilities proportional to body volume

Uniformly sample point in body

Uniformly sample another body

If sampled point in this body, Success! Repeat Step 2, Else repeat Step 4.
ApproxUnion: Volume of Union of Convex Bodies [5]

Consider *k* convex bodies. We wish to compute the volume of their union.

Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body sampling probabilities proportional to body volume

Uniformly sample point in body

Uniformly sample another body

If sampled point in this body, Success! Repeat Step 2, Else repeat Step 4.

Number of successes then yields an unbiased estimator for volume

ApproxUnion is an FPRAS

Volume Computation: FPRAS with error ϵ_V , confidence δ_V

Point Sampling: FPRAS with error ϵ_S , confidence δ_S

Membership Check: FPRAS with error ϵ_P , confidence δ_P

ApproxUnion is an FPRAS

Volume Computation: FPRAS with error ϵ_V , confidence δ_V

3

Point Sampling: FPRAS with error ϵ_S , confidence δ_S

Membership Check: FPRAS with error ϵ_P , confidence δ_P

ApproxUnion is an FPRAS with error ε and confidence δ , using $T = O(k\varepsilon^{-2})$, for $\varepsilon_V, \varepsilon_S \leq \frac{\varepsilon^2}{47k}, \varepsilon_P \leq \frac{\varepsilon^2}{47k^2}, \delta_V \leq \frac{\delta}{4k}, \delta_S + \delta_P \leq \frac{\delta}{2276 \ln(\frac{8}{\delta})\frac{k}{\varepsilon^2}}$.

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

- ApproxWMI:

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

- ApproxWMI:

1) Computes the weight of every DNF clause: weight function integral over LRA-induced convex polytope, multiplied by Boolean probabilities.

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

- ApproxWMI:
 - *Computes the weight of every DNF clause:* weight function integral over LRA-induced convex polytope, multiplied by Boolean probabilities.
 Samples points from a clause as per the weight function.

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

- ApproxWMI:
 - 1) Computes the weight of every DNF clause: weight function integral
 - over LRA-induced convex polytope, multiplied by Boolean probabilities.
 - 2) Samples points from a clause as per the weight function.
 - 3) Checks membership of point to another uniformly random clause.

- In a DNF clause, LRA atoms define a convex polytope.

- In a DNF clause, LRA atoms define a convex polytope.
- The integral of $w_x(x)$ over this polytope, multiplied by the probabilities of clause Boolean literals, yields the clause weight.

- In a DNF clause, LRA atoms define a convex polytope.
- The integral of $w_x(x)$ over this polytope, multiplied by the probabilities of clause Boolean literals, yields the clause weight.
- Since $w_x(x)$ is concave, the integral can be computed as the volume of a combined n+1-dimensional convex polytope, e.g.,:

- In a DNF clause, LRA atoms define a convex polytope.
- The integral of $w_x(x)$ over this polytope, multiplied by the probabilities of clause Boolean literals, yields the clause weight.
- Since w_x(x) is concave, the integral can be computed as the volume of a combined n+1-dimensional convex polytope, e.g.,:

Concave Weight Function

2D Convex Polytope

Concave Weight Function

- The volume of this polytope is then computed using standard tools [6].

2D Convex Polytope

Concave Weight Function

- The volume of this polytope is then computed using standard tools [6].
- This volume is multiplied by Boolean probabilities to return clause weight.

- The *n+1*-dimensional polytope is sampled uniformly, as a proxy for sampling the original polytope according to the weight function.

- The *n+1*-dimensional polytope is sampled uniformly, as a proxy for sampling the original polytope according to the weight function.

- The *n+1*-dimensional polytope is sampled uniformly, as a proxy for sampling the original polytope according to the weight function.

- The *n+1*-dimensional polytope is sampled uniformly, as a proxy for sampling the original polytope according to the weight function.

- Membership to LRA polytope is checked by validating point against every LRA atom in a clause.

ClauseWeight: FPRAS with error ϵ_V , confidence δ_V

Sampling: FPRAS with error ϵ_S , confidence δ_S

Evaluate: FPRAS with error ϵ_P , confidence δ_P

ClauseWeight: FPRAS with error ϵ_V , confidence δ_V

3 Evaluate: FPRAS with error ϵ_P , confidence δ_P

ApproxWMI is an FPRAS for WMI(DNF) with error ε and confidence δ , using $T = O(k\varepsilon^{-2})$, for $\varepsilon_V, \varepsilon_S \leq \frac{\varepsilon^2}{47k}, \varepsilon_P \leq \frac{\varepsilon^2}{47k^2}, \delta_V \leq \frac{\delta}{4k}, \delta_S + \delta_P \leq \frac{\delta}{2276 \ln(\frac{8}{\delta})\frac{k}{\varepsilon^2}}$.

- Randomly generated DNF instances, with equally many Boolean and real variables. Total number of variables uniformly set between 100 and 1000 in increments of 100.

- Randomly generated DNF instances, with equally many Boolean and real variables. Total number of variables uniformly set between 100 and 1000 in increments of 100.
- Clause width uniformly set between 3,5,8, and 13.

- Randomly generated DNF instances, with equally many Boolean and real variables. Total number of variables uniformly set between 100 and 1000 in increments of 100.
- Clause width uniformly set between 3,5,8, and 13.
- Number of clauses is roughly the number of variables divided by clause width.

- Randomly generated DNF instances, with equally many Boolean and real variables. Total number of variables uniformly set between 100 and 1000 in increments of 100.
- Clause width uniformly set between 3,5,8, and 13.
- Number of clauses is roughly the number of variables divided by clause width.
- Real weight function is a concave polynomial with degree up to 5.

- Exact weight computation oracle: Faster due to small clause widths.

- Exact weight computation oracle: Faster due to small clause widths.
- Hit-and-Run sampler [7], with practically used constant iteration factor.

- Exact weight computation oracle: Faster due to small clause widths.
- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:

- Exact weight computation oracle: Faster due to small clause widths.
- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:

- Target error *ε*: Set to 0.15, 0.25, and 0.35.

- Exact weight computation oracle: Faster due to small clause widths.
- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:

- Target error *ε*: Set to 0.15, 0.25, and 0.35.
- Target confidence δ : Set to 0.05, 0.15 and 0.25.

Results

Results

Results

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.
- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables, which is out of reach for existing WMI solvers.

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.
- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables, which is out of reach for existing WMI solvers.
- ApproxWMI can be extended to more general factorizations enabling real-Boolean dependency.

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.
- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables, which is out of reach for existing WMI solvers.
- ApproxWMI can be extended to more general factorizations enabling real-Boolean dependency.
- ApproxWMI is a useful tool for efficient probabilistic inference in hybrid domains.

Thank You!

Selected References

[1] Abboud, R.; Ceylan, İ; and Dimitrov, R. 2020. On the approximability of weighted model integration on DNF structures. To appear in *Proc. of KR*.

[2] Martires, P.; Dries, A.; and De Raedt, L. 2019. Exact and approximate weighted model integration with probability density functions using knowledge compilation. In *Proc. of AAAI*, 7825–7833

[3] Roth, D. 1996. On the Hardness of Approximate Reasoning. AlJ 82(1-2):273–302

[4] Karp, R. M.; Luby, M.; and Madras, N. 1989. Monte-Carlo approximation algorithms for enumeration problems. *J. Algorithms* 10(3):429–448

[5] Bringmann, K., and Friedrich, T. 2010. Approximating the volume of unions and intersections of high-dimensional geometric objects. *Comput. Geom.* 43(6-7):601–610.

[6] Lovasz, L., and Vempala, S. S. 2006. Simulated annealing in convex bodies and an O^* (n^4) volume algorithm. *JCSS* 72(2):392–417.

[7] Chen, M., and Schmeiser, B. W. 1996. General hit-and-run Monte Carlo sampling for evaluating multidimensional integrals. *Oper. Res. Lett.* 19(4):161–169

