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Weighted Model Counting

𝜙 propositional formula

𝑤:𝒜 𝜙 → ℝ weight function

WMC 𝜙 *
!⊨#

𝑤(𝜙)

Applications

Probabilistic Graphical Models Probabilistic Logic Programming

Probabilistic Databases Probabilistic Knowledge Bases
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Weighted Model Integration

- Weighted model counting only applies over discrete variables.

- Inspired by SMT, Weighted model integration generalizes weighted 
model counting over discrete and continuous variables.

Χ set of n real variables

V set of m Boolean variables
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𝑐$𝑥$ +…+ 𝑐% 𝑥% ⋈ c LRA Atom, 𝑥% ∈ Χ, ⋈∈ {<,≤,>,≥,=,≠}

atoms(Χ, V) propositional and LRA atoms over Χ ∪ V

𝜙 propositional formula over 𝛸 ∪ V

WMI 𝜙 *
!

I
(!

𝑤 𝑥, 𝑣 𝑑𝑥

where 𝑣 is a Boolean assignment over V, 𝑥# denotes valuations of Χ satisfying 𝜙.

𝑤: ℝ&×𝔹' → ℝ weight function over 𝛸 ∪ V
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Weighted Model Integration: Weight Function

𝑤: ℝ&×𝔹' → ℝ weight function over 𝛸 ∪ V

For weight functions in WMI, it is common to factorize [2] 𝑤 as a product of m
Boolean literal weights and a density function over real variables, i.e.,: 

𝑤 𝑥, 𝑣 = 𝑤! 𝑥 .
"#$

%

𝑤& 𝑝" .
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Special Cases

𝑥 ∨ 𝑦 ∧ (𝑦 ∨ 𝑧) Conjunctive Normal Form (CNF)

𝑥 ∧ 𝑦 ∨ (𝑦 ∧ 𝑧) Disjunctive Normal Form (DNF)

Special cases WMI(CNF), WMI(DNF)

Both WMI and WMC are #P-hard for exact solving. Hence, we study 
WMI within the context of approximate solving.
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Result:
Show that WMI(DNF) admits an FPRAS for concave 

weight functions

Result builds on existing FPRAS algorithms for WMC(DNF) and volume computation for the union of convex bodies
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ApproxUnion: Volume of Union of Convex Bodies [5]

1 Compute individual body volumes

5 3

4

2 Randomly sample body 
sampling probabilities proportional to body volume

3 Uniformly sample point in body

4 Uniformly sample another body
If sampled point in this body, Success! 
Repeat Step 2, Else repeat Step 4.

Run until Step 4 executes T times: 

Consider k convex bodies. We wish to compute the volume of their union.

Number of successes then yields an unbiased estimator for volume
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ApproxUnion is an FPRAS

1 Volume Computation: FPRAS with error 𝜖1, confidence 𝛿1

2 Point Sampling: FPRAS with error 𝜖2, confidence 𝛿2

3 Membership Check: FPRAS with error 𝜖3, confidence 𝛿3

ApproxUnion is an FPRAS with error 𝜀 and confidence 𝛿, using T = 𝑂(𝑘𝜀45) , 

for 𝜀1, 𝜀2 ≤ 6"

789
, 𝜀3 ≤

6"

789"
, 𝛿1 ≤

:
79
, 𝛿2 + 𝛿3 ≤

:
558; <=(#$)

%
&"

.
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ApproxWMI: An FPRAS for WMI(DNF)
- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,: 

w(x)

x

- ApproxWMI: 
1) Computes the weight of every DNF clause: weight function integral 
over LRA-induced convex polytope, multiplied by Boolean probabilities.
2) Samples points from a clause as per the weight function.
3) Checks membership of point to another uniformly random clause.
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ApproxWMI: Computing Clause Weight
- The volume of this polytope is then computed using standard tools [6].
- This volume is multiplied by Boolean probabilities to return clause weight. 

13

𝑤!(𝑥)

𝑥

2D Convex Polytope Concave Weight Function

+ à

3D Convex Polytope
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original polytope according to the weight function.

3D Convex Polytope

14

- Membership to LRA polytope is checked by validating 
point against every LRA atom in a clause.
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ApproxWMI is an FPRAS for WMI(DNF) with error 𝜀 and confidence 𝛿, using 
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Experimental Setup: Data Generation
- Randomly generated DNF instances, with equally many Boolean and real variables. 

Total number of variables uniformly set between 100 and 1000 in increments of 100.

- Clause width uniformly set between 3,5,8, and 13.

- Number of clauses is roughly the number of variables divided by clause width.

- Real weight function is a concave polynomial with degree up to 5.
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Experimental Setup: ApproxWMI

- Target error 𝜖: Set to 0.15, 0.25, and 0.35.

- Target confidence 𝛿: Set to 0.05, 0.15 and 0.25.

17

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7],  with practically used constant iteration factor.

Three algorithm configurations: 
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Summary

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables, 
which is out of reach for existing WMI solvers.

- ApproxWMI can be extended to more general factorizations enabling real-Boolean 
dependency. 

- ApproxWMI is a useful tool for efficient probabilistic inference in hybrid domains.
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Thank You!
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