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Applications

Probabilistic Graphical Models Probabilistic Logic Programming

Probabilistic Databases Probabilistic Knowledge Bases
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- Inspired by SMT, Weighted model integration generalizes weighted
model counting over

X set of n real variables

V set of m Boolean variables
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Weighted Model Integration

X1 X LRA Atom, x; € X, XE {<, <, >, >, =, #}

X,V propositional and LRA atoms over X U V
propositional formula over X UV

weight function over X UV

WMI(¢p) x,v)dx
1% x¢

where v is a Boolean assignment over V, x denotes valuations of X satistying
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weight function over X UV

For weight functions in WMI, it is common to factorize [2] v as a product of m
Boolean literal weights and a density function over real variables, i.e.,:

wie,v) = w0 | [wy o).
i=1
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Disjunctive Normal Form (DNF)
mm) Special cases WMI(CNF), WMI(DNF)

Both WMI and WMC are #P-hard for exact solving. Hence, we study
WMI within the context of approximate solving.
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How hard is it to approximate WMI(CNF) and WMI(DNF)?

WMC WMI
CNF NP-hard [3] —) NP-hard

DNF FPRAS [4] —) ?



Result:
Show that WMI(DNF) admits an FPRAS for concave
weight functions

Result builds on existing FPRAS algorithms for WMC(DNF) and volume computation for the union of convex bodies
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ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body
sampling probabilities proportional to body volume

e Uniformly sample point in body

Uniformly sample another body

If sampled point in this body, Success!
Repeat Step 2, Else repeat Step 4.

Number of successes then yields an unbiased estimator for volume 9
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0 Volume Computation: FPRAS with error €y, confidence dy,
9 Point Sampling: FPRAS with error €, confidence 4

e Membership Check: FPRAS with error €p, confidence dp
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ApproxUnion is an FPRAS

a Volume Computation: FPRAS with error €y, confidence dy,
g Point Sampling: FPRAS with error €, confidence 4

9 Membership Check: FPRAS with error €p, confidence dp

ApproxUnion |s an FPRAS W|th error 8 and confidence 6, using T = 0(ke™2),

o)
forey,ec < —,6p < Oy < 6 + 0
vi€s S ot S 4-7k2 v = s 0p = 2276 In(3)5
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ApproxWMI: An FPRAS for WMI(DNF)

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

A

w(x)

X

- ApproxWMI:
1) Computes the weight of every DNF clause: weight function integral

over LRA-induced convex polytope, multiplied by Boolean probabilities.

2) Samples points from a clause as per the weight function.
3) Checks membership of point to another uniformly random clause.
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ApproxXWMI: Computing Clause Weight

- The volume of this polytope is then computed using standard tools [6].
- This volume is multiplied by Boolean probabilities to return clause weight.

2D Convex Polytope Concave Weight Function 3D Convex Polytope 3



ApproxXWMI: Sampling Points and Checking Membership

- The n+I1-dimensional polytope is sampled uniformly, as a proxy for sampling the
original polytope according to the weight function.

3D Convex Polytope

14



ApproxXWMI: Sampling Points and Checking Membership

- The n+I1-dimensional polytope is sampled uniformly, as a proxy for sampling the
original polytope according to the weight function.

3D Convex Polytope

14



ApproxXWMI: Sampling Points and Checking Membership

- The n+I1-dimensional polytope is sampled uniformly, as a proxy for sampling the
original polytope according to the weight function.

3D Convex Polytope

14



ApproxWMI: Sampling Points and Checking Membership

- The n+1-dimensional polytope is sampled uniformly, as a proxy for sampling the
original polytope according to the weight function.

- Membership to LRA polytope is checked by validating
point against every LRA atom in a clause.

3D Convex Polytope
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ApproxXWMI is an FPRAS for WMI(DNF)

0 ClauseWeight: FPRAS with error €, confidence 6y,
a Sampling: FPRAS with error €, confidence 4

9 Evaluate: FPRAS with error €p, confidence 6p

ApproxWMI is an FPRAS for WI\/II(DNF) W|th error € and confidence 8, using
T = O(kg 2) for €y, Eg < SV =~ 65' + 6p 0

= Ep < :
47k’ 47k2’ 8\ k
2276 In( 5)52
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- Randomly generated DNF instances, with equally many Boolean and real variables.
Total number of variables uniformly set between 100 and 1000 in increments of 100.

- Clause width uniformly set between 3,5,8, and 13.

- Number of clauses is roughly the number of variables divided by clause width.

- Real weight function is a concave polynomial with degree up to 5.
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Experimental Setup: ApproxWMI

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:
- Target error €: Set to 0.15, 0.25, and 0.35.

- Target confidence 6: Set to 0.05, 0.15 and 0.25.
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Summary

ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables,
which is out of reach for existing WMI solvers.

- ApproxWMI can be extended to more general factorizations enabling real-Boolean
dependency.

- ApproxWMI is a useful tool for efficient probabilistic inference in hybrid domains.
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Thank You!
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