On the Approximability of Weighted
Model Integration over DNF Structures [1]

09 July 2020 MCW@SAT2020

Weighted Model Counting

propositional formula

Weighted Model Counting

propositional formula

weight function

Weighted Model Counting

propositional formula

weight function

WMC(¢)

Weighted Model Counting

propositional formula

weight function

WMC(¢)

Applications

Probabilistic Graphical Models Probabilistic Logic Programming

Probabilistic Databases Probabilistic Knowledge Bases

Weighted Model Integration

- Weighted model counting only applies over

Weighted Model Integration

- Weighted model counting only applies over

- Inspired by SMT, Weighted model integration generalizes weighted
model counting over

Weighted Model Integration

- Weighted model counting only applies over

- Inspired by SMT, Weighted model integration generalizes weighted
model counting over

X set of n real variables

Weighted Model Integration

- Weighted model counting only applies over

- Inspired by SMT, Weighted model integration generalizes weighted
model counting over

X set of n real variables

V set of m Boolean variables

Weighted Model Integration

X1 X LRA Atom, x; € X, XE {<, <, >, >, =, #}

Weighted Model Integration

X1 X LRA Atom, x; € X, XE {<, <, >, >, =, #}

X,V propositional and LRA atoms over X U V

Weighted Model Integration

X1 X LRA Atom, x; € X, XE {<, <, >, >, =, #}

X,V propositional and LRA atoms over X U V

propositional formula over X UV

Weighted Model Integration

X1 X LRA Atom, x; € X, XE {<, <, >, >, =, #}

X,V propositional and LRA atoms over X U V
propositional formula over X UV

weight function over X UV

Weighted Model Integration

X1 X LRA Atom, x; € X, XE {<, <, >, >, =, #}

X,V propositional and LRA atoms over X U V
propositional formula over X UV

weight function over X UV

WMI(¢p) x,v)dx
1% x¢

where v is a Boolean assignment over V, x denotes valuations of X satistying

Weighted Model Integration: Weight Function

Weighted Model Integration: Weight Function

weight function over X UV

Weighted Model Integration: Weight Function

weight function over X UV

Weighted Model Integration: Weight Function

weight function over X UV

For weight functions in WMI, it is common to factorize [2] v as a product of m
Boolean literal weights and a density function over real variables, i.e.,:

wie,v) = w0 | [wy o).
i=1

Special Cases

Conjunctive Normal Form (CNF)

Special Cases

Conjunctive Normal Form (CNF)

Disjunctive Normal Form (DNF)

Special Cases

Conjunctive Normal Form (CNF)

Disjunctive Normal Form (DNF)

mm) Special cases WMI(CNF), WMI(DNF)

Special Cases

Conjunctive Normal Form (CNF)

Disjunctive Normal Form (DNF)
mm) Special cases WMI(CNF), WMI(DNF)

Both WMI and WMC are #P-hard for exact solving. Hence, we study
WMI within the context of approximate solving.

Approximation Hardness

How hard is it to approximate WMI(CNF) and WMI(DNF)?

Approximation Hardness

How hard is it to approximate WMI(CNF) and WMI(DNF)?

WMC WMI
CNF NP-hard [3] —) NP-hard

DNF FPRAS [4] —) ?

Result:
Show that WMI(DNF) admits an FPRAS for concave
weight functions

Result builds on existing FPRAS algorithms for WMC(DNF) and volume computation for the union of convex bodies

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body
sampling probabilities proportional to body volume

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body
sampling probabilities proportional to body volume

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body
sampling probabilities proportional to body volume

e Uniformly sample point in body

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body
sampling probabilities proportional to body volume

e Uniformly sample point in body

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body
sampling probabilities proportional to body volume

e Uniformly sample point in body

Uniformly sample another body

If sampled point in this body, Success!
Repeat Step 2, Else repeat Step 4.

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body
sampling probabilities proportional to body volume

e Uniformly sample point in body

Uniformly sample another body

If sampled point in this body, Success!
Repeat Step 2, Else repeat Step 4.

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body
sampling probabilities proportional to body volume

e Uniformly sample point in body

Uniformly sample another body

If sampled point in this body, Success!
Repeat Step 2, Else repeat Step 4.

ApproxUnion: Volume of Union of Convex Bodies [5]

Consider k convex bodies. We wish to compute the volume of their union.

0 Compute individual body volumes

Run until Step 4 executes T times:

Randomly sample body
sampling probabilities proportional to body volume

e Uniformly sample point in body

Uniformly sample another body

If sampled point in this body, Success!
Repeat Step 2, Else repeat Step 4.

Number of successes then yields an unbiased estimator for volume 9

ApproxUnion is an FPRAS

0 Volume Computation: FPRAS with error €y, confidence dy,
9 Point Sampling: FPRAS with error €, confidence 4

e Membership Check: FPRAS with error €p, confidence dp

10

ApproxUnion is an FPRAS

a Volume Computation: FPRAS with error €y, confidence dy,
g Point Sampling: FPRAS with error €, confidence 4

9 Membership Check: FPRAS with error €p, confidence dp

ApproxUnion |s an FPRAS W|th error 8 and confidence 6, using T = 0(ke™2),

o)
forey,ec < —,6p < Oy < 6 + 0
vi€s S ot S 4-7k2 v = s 0p = 2276 In(3)5

10

ApproxXWMI: An FPRAS for WMI(DNF)

11

ApproxWMI: An FPRAS for WMI(DNF)

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

11

ApproxXWMI: An FPRAS for WMI(DNF)

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

A W(X)

11

ApproxWMI: An FPRAS for WMI(DNF)

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

A

w(x)

- ApproxWMI:

11

ApproxWMI: An FPRAS for WMI(DNF)

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

A

w(x)

X

- ApproxWMI:
1) Computes the weight of every DNF clause: weight function integral
over LRA-induced convex polytope, multiplied by Boolean probabilities.

11

ApproxWMI: An FPRAS for WMI(DNF)

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

A

w(x)

X

- ApproxWMI:
1) Computes the weight of every DNF clause: weight function integral

over LRA-induced convex polytope, multiplied by Boolean probabilities.

2) Samples points from a clause as per the weight function.

11

ApproxWMI: An FPRAS for WMI(DNF)

- ApproxWMI applies over WMI(DNF) with concave weight functions, e.g.,:

A

w(x)

X

- ApproxWMI:
1) Computes the weight of every DNF clause: weight function integral

over LRA-induced convex polytope, multiplied by Boolean probabilities.

2) Samples points from a clause as per the weight function.
3) Checks membership of point to another uniformly random clause.

11

ApproxXWMI: Computing Clause Weight

12

ApproxWMI: Computing Clause Weight

- In a DNF clause, LRA atoms define a convex polytope.

12

ApproxXWMI: Computing Clause Weight

- In a DNF clause, LRA atoms define a convex polytope.
- The integral of w,. (x) over this polytope, multiplied by the probabilities of
clause Boolean literals, yields the clause weight.

12

ApproxWMI: Computing Clause Weight

- In a DNF clause, LRA atoms define a convex polytope.

- The integral of w,.(x) over this polytope, multiplied by the probabilities of
clause Boolean literals, yields the clause weight.

- Since w,.(x) is concave, the integral can be computed as the volume of a
combined n+I1-dimensional convex polytope, e.g.,:

Wi (X)

2D Convex Polytope Concave Weight Function

12

ApproxXWMI: Computing Clause Weight

- In a DNF clause, LRA atoms define a convex polytope.

- The integral of w,.(x) over this polytope, multiplied by the probabilities of
clause Boolean literals, yields the clause weight.

- Since w,(x) is concave, the integral can be computed as the volume of a
combined n+I1-dimensional convex polytope, e.g.,:

Wi (X)

9

2D Convex Polytope Concave Weight Function 3D Convex Polytope 1>

ApproxXWMI: Computing Clause Weight

X

2D Convex Polytope Concave Weight Function 3D Convex Polytope 13

ApproxXWMI: Computing Clause Weight

- The volume of this polytope is then computed using standard tools [6].

X

2D Convex Polytope Concave Weight Function 3D Convex Polytope 3

ApproxXWMI: Computing Clause Weight

- The volume of this polytope is then computed using standard tools [6].
- This volume is multiplied by Boolean probabilities to return clause weight.

2D Convex Polytope Concave Weight Function 3D Convex Polytope 3

ApproxXWMI: Sampling Points and Checking Membership

- The n+I1-dimensional polytope is sampled uniformly, as a proxy for sampling the
original polytope according to the weight function.

3D Convex Polytope

14

ApproxXWMI: Sampling Points and Checking Membership

- The n+I1-dimensional polytope is sampled uniformly, as a proxy for sampling the
original polytope according to the weight function.

3D Convex Polytope

14

ApproxXWMI: Sampling Points and Checking Membership

- The n+I1-dimensional polytope is sampled uniformly, as a proxy for sampling the
original polytope according to the weight function.

3D Convex Polytope

14

ApproxWMI: Sampling Points and Checking Membership

- The n+1-dimensional polytope is sampled uniformly, as a proxy for sampling the
original polytope according to the weight function.

- Membership to LRA polytope is checked by validating
point against every LRA atom in a clause.

3D Convex Polytope

14

ApproxXWMI is an FPRAS for WMI(DNF)

0 ClauseWeight: FPRAS with error €, confidence 6y,

e Sampling: FPRAS with error €, confidence 4

e Evaluate: FPRAS with error €p, confidence 6p

15

ApproxXWMI is an FPRAS for WMI(DNF)

0 ClauseWeight: FPRAS with error €, confidence 6y,
a Sampling: FPRAS with error €, confidence 4

9 Evaluate: FPRAS with error €p, confidence 6p

ApproxWMI is an FPRAS for WI\/II(DNF) W|th error € and confidence 8, using
T = O(kg 2) for €y, Eg < SV =~ 65' + 6p 0

= Ep < :
47k’ 47k2’ 8\ k
2276 In(5)52

15

Experimental Setup: Data Generation

16

Experimental Setup: Data Generation

- Randomly generated DNF instances, with equally many Boolean and real variables.
Total number of variables uniformly set between 100 and 1000 in increments of 100.

16

Experimental Setup: Data Generation

- Randomly generated DNF instances, with equally many Boolean and real variables.
Total number of variables uniformly set between 100 and 1000 in increments of 100.

- Clause width uniformly set between 3,5,8, and 13.

16

Experimental Setup: Data Generation

- Randomly generated DNF instances, with equally many Boolean and real variables.
Total number of variables uniformly set between 100 and 1000 in increments of 100.

- Clause width uniformly set between 3,5,8, and 13.

- Number of clauses is roughly the number of variables divided by clause width.

16

Experimental Setup: Data Generation

- Randomly generated DNF instances, with equally many Boolean and real variables.
Total number of variables uniformly set between 100 and 1000 in increments of 100.

- Clause width uniformly set between 3,5,8, and 13.

- Number of clauses is roughly the number of variables divided by clause width.

- Real weight function is a concave polynomial with degree up to 5.

16

Experimental Setup: Approx\WMI|

17

Experimental Setup: ApproxWMI

- Exact weight computation oracle: Faster due to small clause widths.

17

Experimental Setup: ApproxWMI

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7], with practically used constant iteration factor.

17

Experimental Setup: ApproxWMI

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:

17

Experimental Setup: ApproxWMI

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:
- Target error €: Set to 0.15, 0.25, and 0.35.

17

Experimental Setup: ApproxWMI

- Exact weight computation oracle: Faster due to small clause widths.

- Hit-and-Run sampler [7], with practically used constant iteration factor.

Three algorithm configurations:
- Target error €: Set to 0.15, 0.25, and 0.35.

- Target confidence 6: Set to 0.05, 0.15 and 0.25.

17

Results

Execution time (s)

€=0.15,0 = 0.05

5,000

4,000

3,000

2,000

1,000

200

400 600 800
Number of variables (m + n)

1,000

18

Results

Execution time (s)

€=0.25,0 =0.15

5,000

4,000

3,000 -

2,000

1,000 -

— W =3
e W =

— W =8
— W =13

|y

200 400 600 800
Number of variables (m + n)

1,000

18

Results

Execution time (s)

5,000

€=0.35,0 = 0.25

4,000

3,000 -

2,000

1,000 -

— W =3
— W =5
— W =8
— W =13

,_/

200 400 600 800 1,000
Number of variables (m + n)

18

Summary

19

Summary

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

19

Summary

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables,
which is out of reach for existing WMI solvers.

Summary

- ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables,
which is out of reach for existing WMI solvers.

- ApproxWMI can be extended to more general factorizations enabling real-Boolean
dependency.

19

Summary

ApproxWMI is an FPRAS for WMI(DNF) given concave weight functions.

- ApproxWMI is scalable, and can efficiently solve instances with up to 1K variables,
which is out of reach for existing WMI solvers.

- ApproxWMI can be extended to more general factorizations enabling real-Boolean
dependency.

- ApproxWMI is a useful tool for efficient probabilistic inference in hybrid domains.

19

Thank You!

23\ UNIVERSITY OF

240).40):30

Selected References

[1] Abboud, R.; Ceylan, I; and Dimitrov, R. 2020. On the approximability of weighted model integration
on DNF structures. To appear in Proc. of KR.

[2] Martires, P.; Dries, A.; and De Raedt, L. 2019. Exact and approximate weighted model integration
with probability density functions using knowledge compilation. In Proc. of AAAI, 7825-7833

[3] Roth, D. 1996. On the Hardness of Approximate Reasoning. AlJ 82(1-2):273-302

[4] Karp, R. M.; Luby, M.; and Madras, N. 1989. Monte-Carlo approximation algorithms for
enumeration problems. J. Algorithms 10(3):429-448

[5] Bringmann, K., and Friedrich, T. 2010. Approximating the volume of unions and intersections of
high-dimensional geometric objects. Comput. Geom. 43(6-7):601-610.

[6] Lovasz, L., and Vempala, S. S. 2006. Simulated annealing in convex bodies and an O* (n*) volume
algorithm. JCSS 72(2):392-417.

[7] Chen, M., and Schmeiser, B. W. 1996. General hit-and-run Monte Carlo sampling for evaluating
multidimensional integrals. Oper. Res. Lett. 19(4):161-169

c

NIVERSITY OF

XFORD

