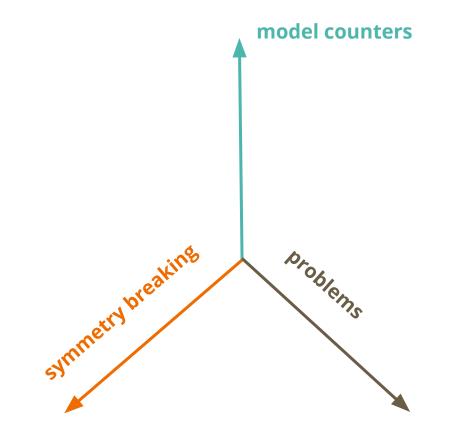
A Study of Symmetry Breaking Predicates and Model Counting

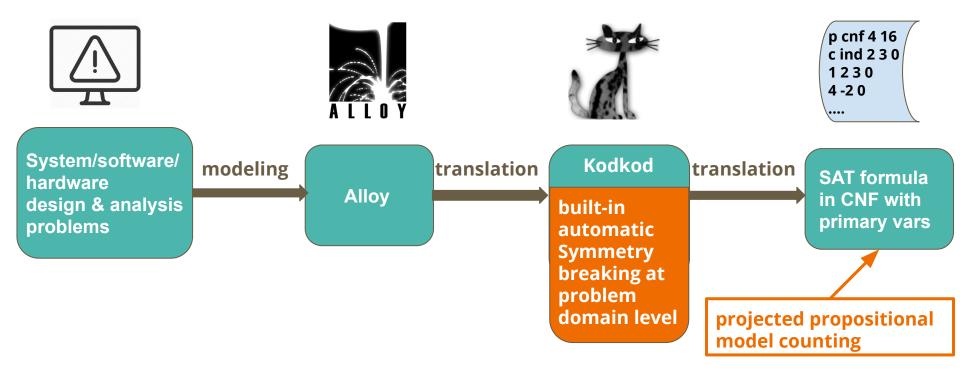
This paper has been published at TACAS 2020

Wenxi Wang¹, Muhammad Usman¹, Alyas Almaawi¹, Kaiyuan Wang², Kuldeep S. Meel³, and Sarfraz Khurshid¹

1. University of Texas at Austin, Austin, TX, USA


2. Google Inc., Sunnyvale, CA, USA

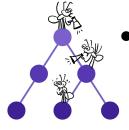
3. National University of Singapore, Singapore


What we want to study?

What is the impact of symmetry breaking on model counting?

How we did the study?

Problems - Alloy & Kodkod for CNF generator


Problems - base benchmarks

Alloy: all Alloy models in Alloy standard distribution;
47 base problems.

- Kodkod: all Kodkod programs in Kodkod standard distribution;
 13 base problems.
- n-Queens: 1) k queens are placed on a k × k board (1 ≤ k ≤ 12);
 2) 3 queens are placed on a k × k board (1 ≤ k ≤ 12);
 24 base problems.

Complex data structures: (1) singly-linked lists; (2) sorted lists; (3) doubly-linked lists; (4) binary trees; (5) binary search trees; and (6) red-black trees; **24** base problems;

Symmetry Breaking

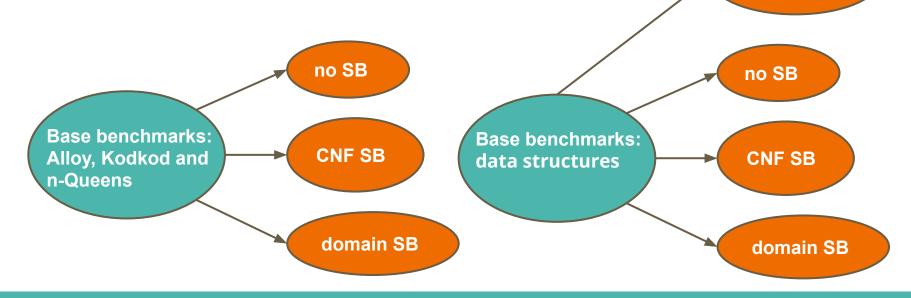
- Static symmetry breaking => symmetry breaking predicates (SBPs).
- CNF level SBPs:

use the state-of-the-art tool called **BreakID**;

• problem domain level SBPs:

use Kodkod automatic SB machanism.

• manually added SBPs:


write by human in **Alloy**.

Symmetry Breaking - benchmarks for study

For each base benchmark *b*, *we create*:

- *b* with no symmetry breaking;
- *b* with CNF level SBP;
- *b* with problem domain SBP;
- For **data structure benchmark**: *b* with manual SBP;

Problems & Symmetry breaking - benchmark characteristics.

source	# prim.	no-sb		cnf- sb		dom- sb		man-sb	
		#var.	# clause	#var.	# clause	#var.	# clause	#var.	# clause
Alloy: min	46	384	620	522	1037	384	620	-	-
Alloy: max	2048	93764	291349	93764	289725	93764	291349	-	-
Kodkod: min	48	631	188	932	628	990	188	-	-
Kodkod: max	8188	388755	764957	397566	834629	453358	877429	-	-
n-Queens: min	1024	3762	7163	3762	7163	3762	7163	-	
n-Queens: max	12288	200074	532527	201064	523947	269141	704396	-	-
Data Str.: min	43	992	3039	1091	3337	1209	3401	1006	3155
Data Str.: max	510	18694	48290	19045	45562	19808	50212	18993	50696

Model Counters

• ApproxMC:

one of the state-of-the-art projected apprximate model counters.

• **ProjMC**:

one of the state-of-the-art projected exact model counters.

ApproxMC and ProjMC embody very different algorithms for model counting and provide us a diverse set of tools for the study.

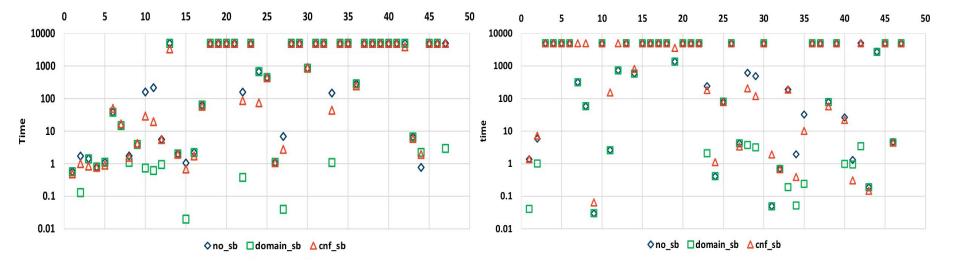
Experimental Metrics

• Time:

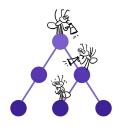
actual wall-clock times; 5000 seconds Timeout;

- Model count:
 - 1) actual count;
 - 2) count ratio:

the ratio of the count under no symmetry breaking setting to the count under one symmetry breaking setting;

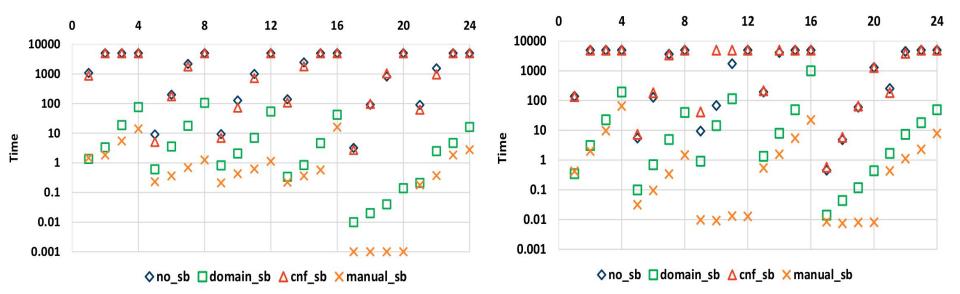

the impact of SBP in solution space pruning

Results-Time in Alloy Problems

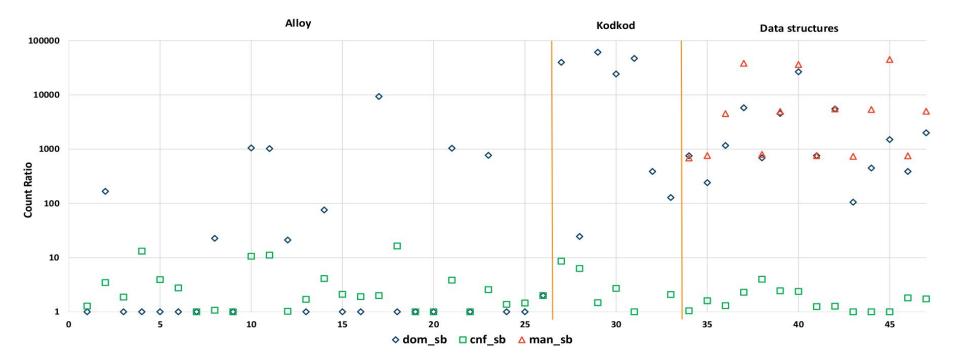


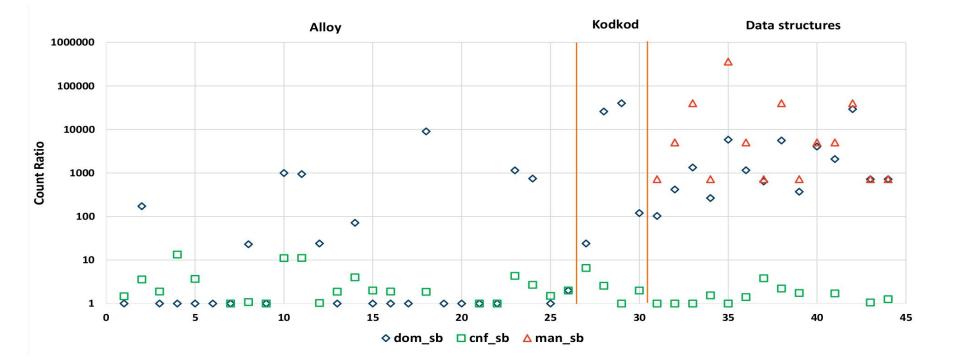
ApproxMC

ProjMC



Results - Time in Data Structure Problems


ApproxMC



Results - count ratios for ApproxMC under different SB settings

count ratio: the ratio of the count under no symmetry breaking setting to the count under one symmetry breaking setting;

Results - count ratios for ProjMC under different SB settings

• Addition of symmetry breaking predicates can significantly reduce the time taken by model counters;

• Problem domain level symmetry breaking is more effective than CNF level symmetry breaking;

Thank you for listening!

Any questions?