Counting and Sampling Problems in
Computational Biology
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Combinatorial Optimization in Computational Biology

 How similar are genome sequences? = Edit Distance
 What is the evolutionary history of all species? = Steiner Tree

Problem II: Given input X space of feasible
find output Y such that Z. solutions I1(X)

Challenge 1: Optimization problems

Integer linear programming

inspired by biology often NP-hard

Challenge 2: Multiple solutions due to

 Problem itself
(integer objective function)

Satisfiability

* Interest in near-optimal solutions




Outline

Solving problems in computational biology
via approximate model counting
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Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer
[Nowell, 1976]
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Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer
[Nowell, 1976]
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Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer
[Nowell, 1976]

-
New clones
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Cancer is an Evolutionary Process

Clonal Evolution Theory of Cancer

[Nowell, 1976]
Intra-Tumor

-~
Q- -
Heterogeneity

. Understand metastatic Compare evolutionary
Identify treatment targets .
development patterns across patients

Phylogenetic Tree T




DNA Sequencing of Tumors

Bulk DNA Sequencing
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[El-Kebir et al., Bioinformatics/ISMB 2015]




Perfect Phylogeny Mixture (PPM)
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Restricted PP Matrix B

Perfect Phylogeny Mixture:
Given F, find U and B such that F=U B

[El-Kebir et al., Bioinformatics/ISMB 2015]
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Sampling PPM Solutions

100 .
samples (m)
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= Sampling results by PhyloWGS
-‘é’ . ? [Deshwar et al., 2015]
1)
g = =
) -0~ ﬂ-o.
1{) D
3 5 7 9 11 13

number n of mutations

* PPM is NP-Complete (El-Kebir et al., 2015)
* #PPM is #P-Complete (Qi et al., 2019)

[Qi et al., Algorithms in Molecular Biology, 2019]



SAT Formulation

Sum condition: frequency of parent >= sum of frequencies of children

© o0 e e
S (0.8 0.5 03 0.2)

Frequency Matrix F

Ancestry Graph G

[Qi and El-Kebir, In preparation]
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* Constraints:

* Unique root

* Unique parents
* Cycle prevention
e Sum condition

* Complexity:
e O(n|E| + Nm|E|)
variables
* O(IE|* + Nm|E])
clauses
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Sampling using UniGen v2
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Sampling results using SAT formulation

[Qi and El-Kebir, In preparation] 16



DNA Sequencing of Tumors (2/2)

k DNA Seguencing ($) Single-cell DNA Sequencing ($$$)

False Negative

Missing Data

- False Positive
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Phylogeny Inference from Single-cell Data

n SNVs n SNVs

©C @ O e @ © @ O @e ©

0(0000?\ Q(ooooo\

@11 0 1 10 @11 0 1 1 0

2@|1 0 01 0 @1 0110

5@10000»5@11000 »
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&\o 1 0 0 1 & \0o 1 0 0 1 @
Input Matrix D Binary Matrix B Phylogenetic Tree T

Goal: Given single-cell sequencing data, sample possible phylogenetic trees
Requirement: Evolutionary model for somatic mutations
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Infinite Sites Assumption vs k-Dollo Model
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[El-Kebir, Bioinformatics/ECCB 2018]

Size (bp)

0. Single Nucleotide

10 ~Variant (SNV)

—
-
[

Small Insertion /
Deletion (indel)

1044+
10 Copy-Number
Aberration (CNA)
10°
Structural
10 Variant (SV)

Whole-Genome
Duplication (WGD)

SNVs can be lost due to CNAs

ACGTCEAGAGCGGE O 0
ACGTCGAGAGCGG

ACGTC AGCGG C.) 1
ACGTC AGCGG

ACGTCGAGAGCGE O 5
copy number loss ----- = ---CGG

Infinite Sites Assumption:

* No parallel evolution of SNVs

* No loss of SNVs

* SCITE [Jahn et al. 2016]

* OncoNEM [Ross and Markowetz, 2016]

k-Dollo Parsimony Model:

* No parallel evolution of SNVs

* SNV can be lost up to k times

We will use the 1-Dollo model, where k=1

19



k-Dollo Phylogeny Flip and Cluster (k-DPFC) problem. Given matrix
D € {0,1,7}™*™ error rates «a, € [0,1], integers k,s,t € N, find matrix
B € {0,1}™*™ and tree T such that: (1) B has at most s unique rows and at
most ¢ unique columns; (2) Pr(D | B, «a, ) is maximum; and (3) T is a k-Dollo
phylogeny for B.
(oz, dp.=1and b,. =0
m n |1l—a dp.=1andb,.=1,
Pr(D|B,a,8) =[] ]] 4 5. dy.=0and b, =1,
p=1c=1[1_8 d . =0andb,, =0,

L dpc="

n SNVs n SNVs n SNVs

©C @ O e o ©C @ O e o ©C @ O e ©
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&1 1 0 01 @lo 1 0 0 1 @2 1 0 0 1 |
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Input Matrix D Binary Matrix B k-Dollo Completion A k-Dollo Phylogeny T
[El-Kebir, Bioinformatics/ECCB 2018] 20



SAT Formulation

Variables

Clauses

False positive and false negatives

i, e [m].f e [n]

Fi e [mljen]

Losses

ol

VA

i c m, i€ [n]

Clustering (determine duplicate rows/columns)

e jem @ige. i€ kLS |n] k<

-

rile R ik g € m € n|d <

PieiJ C )i g
okl C[n] k<]

Number of variables: 0(m*n + mn?)

Enforce absence of forbidden submatrices

* Enforce that any submatrix of A cannot equal any of
the 25 submatrices

e Allow this constraint to be violated if a row or column

of the submatrix is a duplicate

iy - 2 M =l 2]
= [ P2 A dan dz 2 Vg Ve VryVirg Ve
."f.,'..l 7‘, 9 d

Determine whether two rows or columns are equal
Bound the number of false positives and false negatives
Enforce the number of cell and mutation clusters

* Encode sum of binary variables as a binary vector
using a half/full adder

Number of clauses: O0(m>*n? + n?)

[Oh and El-Kebir, In preparation]
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Results
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@ " - L e = A
= e
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" b 6 - 5 . 10 5 6 . . " 10 MNumbuer of solulivns
number m of cells (n = 5 mutations) number n of mutations (m = 5 cells)
Simulations show: L4 —h—
* Runtime is reduced by providing the set of known allowed losses € e
* Supplementing SCS data with copy number data could help improve - == o
runtime B g
* Runtime is roughly proportional to the number of solutions to a given formula E ' v
* DolloSAT is not yet feasible for real datasets (m > 100 cells) e
e Currently working on a cutting planes approach to reduce runtime 14
min max avg

[Oh and El-Kebir, In preparation] 22
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Evolution & Transmission during an Outbreak
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Directed Transmission Inference (DTI): Input

Timed Phylogeny: 7
A rooted tree T whose vertices are labeled by time- \
stamps 7: V(T) — R*° s.t. 7(u) < 7(v) for all ’
pairs (u, v) where u is an ancestor of v.
@
= 1\
v

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]



Directed Transmission Inference (DTI): Input

Timed Phylogeny:

A rooted tree T whose vertices are labeled by time-
stamps 7: V(T) — R*° s.t. 7(u) < t(v) for all
pairs (u, v) where u is an ancestor of v.

Epidemiological Data:

For each host s € X, we have an entrance time
To(s)and removal time t,.(s) and leaves are
labeled by hosts.

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]

time 7

(Tm Tr)

Ty |
-——(:I:r-—
©
@ )
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Directed Transmission Inference (DTI): Input

Timed Phylogeny: - T 7
A rooted tree T whose vertices are labeled by time- (T:¢) I
stamps 7: V(T) — R*° s.t. 7(u) < t(v) for all | '
pairs (u, v) where u is an ancestor of v.
. . . o —
Epidemiological Data: : _ / \
For each host s € X, we have an entrance time —
. 51 B
To(s)and removal time t,.(s) and leaves are “D ' |
labeled by hosts. =
= B o,
Contact Map: v ) &

A directed graph with vertex set given by the set of

('Tc Tr)
hosts X indicating putative transmission pairs. ’

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 27



Directed Transmission Inference (DTI): Output

Timed Phylogeny: - .- ‘
A rooted tree T whose vertices are labeled by time- (T, £) l /
2

stamps 7: V(T) — R*° s.t. 7(u) < 7(v) for all |
pairs (u, v) where u is an ancestor of v. i 9
N
g

Epidemiological Data:

For each host s € X, we have an entrance time

To(s)and removal time t,.(s) and leaves are :1") ‘
labeled by hosts. g ® / \
Contact Map: v N 0 ': '
A directed graph with vertex set given by the set of (Tos Tr)

hosts X indicating putative transmission pairs. | C

Internal Vertex Labeling and Transmission Tree:

A host labeling of a timed phylogeny T is a function £ : L(T) — Z, assigning a host £(u) to each vertex u of
T such that the resulting transmission network S is a spanning tree of the contact map C.

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]



Directed Transmission Inference (DTI): Output

Timed Phylogeny: Il

(T.%)
A rooted tree T whose vertices are labeled by time- l i
stamps 7: V(T) — R3*° st. t(u) < t(v) for all 2/
pairs (u, v) where u is an ancestor of v. :
'- =28
1 o ?

time

Epidemiological Data:
For each host s € ¥, we have an entrance time| °

7,(s)and removal time t,(s) and leaves are| ‘
labeled by hosts. / \
Contact Map: '4— '
A directed graph with vertex set given by the set of

hosts X indicating putative transmission pairs. C

Internal Vertex Labeling and Transmission Tree:

A host labeling of a timed phylogeny T is a function £ : L(T) — Z, assigning a host £(u) to each vertex u of
T such that the resulting transmission network S is a spanning tree of the contact map C.

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]



Directed Transmission Inference (DTI): Output

Timed Phylogeny: Il

time

Epidemiological Data:
For each host s € X, we have an entrance time

(T,£)
A rooted tree T whose vertices are labeled by time- l ‘
stamps 7: V(T) — R st. t(u) < t(v) for all 2/ Multiple
pairs (u, v) where u is an ancestor of v. . Solutions!
~ i
1 e s

- { Tos Tr) T. E’
To(s)and removal time t,.(s) and leaves are e

labeled by hosts. i / \
2
Contact Map: \ '_’_4— ‘
A directed graph with vertex set given by the set of i ...2_ i
8,
& S’

hosts X indicating putative transmission pairs.

Internal Vertex Labeling and Transmission Tree:

A host labeling of a timed phylogeny T is a function £ : L(T) — Z, assigning a host £(u) to each vertex u of
T such that the resulting transmission network S is a spanning tree of the contact map C.

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]



Complexity

h = /\?zl(yi,l VooV 4i.3)
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Timed Phylogeny and epidemiological data

We show that Transmission Tree Inference Problem is NP-complete and the corresponding
counting problem is #P-complete by reduction from the 1-in-3SAT problem

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 31




Sampling DTI Solutions

Naive Rejection Sampling

LREL

Relaxed DTI

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]

SAT based Almost Uniform Sampling (UniGen)

Vertex Labeling

onehot({&; 1, . @im}t). Vo; € V(T).

Transmission Edges

__— " e, Ay
(T ATje) = Cop Twg,

)€ E(T)and s.t € .

Root Host Constraint

Tip == TCgt,

Vs, t € 2,8 # 1,

Unique Infector Constraint

=gy V ey, L€ Xandt £ 1
TV Om V ok V DTy, VS, EC X, 5 F L
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Sampling DTI Solutions

Not Efficient Efficient and Accurate

Naive Rejection Sampling O0(nm + m?) variables and O(nm?* + n*m?) constraints

Vertex Labeling

onehot({&; 1, . @im}t). Vo; € V(T).

Transmission Edges
(x.(‘!s ’A.' 'l‘:}'!t:) :. Csyf-'- v((?'.(‘l'!) E E(T) and S-,t e z-

Root Host Constraint
LREL Tip == TCgt, Vst € X, 5 #

Relaxed DTI

Unique Infector Constraint
=gy V ey, L€ Xandt £ 1
TV Om V ok V DTy, VS, EC X, 5 F L

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 33



Simulation Results

L0°
't B Naive 10! e . |75
B TiTUS - = o
a o WM STTUS g 10- TT B3 5 150
2 T =
i c -+ _.C_) al<
S I0f 2 g ! S 100 =
E @ . ¥ & koo
2 ' 2107 pam s 8075
A K * e S L . ? B "
. %-,- = T W™ o 1 C3 0.50 -
1 2 3 1 2 3 025
simulated bottleneck size & simulated bottleneck size « . ]
min max
Simulations (with complete sampling) show that:
(a) Weak Transmission Bottleneck needs to be considered for inferring and sampling the solutions.
(b) Naive sampling is infeasible for large outbreaks
(c) TiTUS uniformly samples the solution space
[Sashittal and El-Kebir, Bioinformatics/ISMB 2020] 34



HIV Outbreak in 1988-2006 among 11 patients

a=0.01

-J
infection recall

number of unsampled lineages

21 25 29 33 37 41 45 49 53 57 61 65
number of transmissions

Consensus Transmission Tree

infection recall

1.0

0.8

0.6

*
IREEAN

» -

0.001 0.01 0.05 0.1 0.25
percentile threshold «

TiTUS reconstruct the transmission history of a HIV outbreak:

(c) Our method is robust for the choice of percentile threshold

(b) Consensus transmission tree recovers 9/10 transmission pairs in the outbreak

(a) We generate 100,000 samples from the solution space and build a consensus of the selected solutions

[Sashittal and El-Kebir, Bioinformatics/ISMB 2020]
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Conclusions and Future Directions

Solving problems in computational biology via approximate model counting
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Problem Statement

Inputs: Desired output:

* Binary matrix B € {0, 1} * ™ where A rooted tree T that meets the following conditions:
entry b; ; = 1if and only if cell { « FEach vertex is labeled by a vector v € {0, 1}!
contains mutation j * Theroot of T is labeled by the zero vector

» Aset L of mutations that can be lost * Each mutation in [n] labels exactly one gain edge

*  Number of mutation clusters s

* Number of cell clusters t

* Each mutation in L labels at most one loss edge
* Each leaf of Tis labeled by a row of matrix C € {0,1}** ¢

* False positive rate «, false negative * (s the result of correcting errors in B and clustering
rate 8 so that there are s distinct rows and t distinct columns
00000 00000 O A — Dol
(901000 ()00000 00® 00w A matrixisa -voflo
©00101 00101 @001 @)021 @ Completion if and only if it
()00000-*() 00000 ~*E&) 110 *E) 110 > ¥y does not contain any
forbidden submatrices
(ODooo00 (Hooooo (Hooo (Hooo ® @ O
® 10010 @ 11010 oo There are 25 forbidden
Input Corrected Clustered Cor;DTet(i)on 1-Dollo submatrices [El Kebir et al.]
matrix B matrix B' matrix C P Phylogeny T

matrix A
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Background

Accurate inference of transmission networks if pivotal for
* real-time outbreak management,
* public health policies.

Traditional epidemiological approaches involve:
* fieldwork and interviews,
* contact tracing.

With decreasing costs of genomic sequencing,
molecular epidemiology has become indispensable.
(e.g. ~2500 SARS-CoV-2 sequences on GISAID.)




Challenges in Transmission Network Inference

* Incomplete lineage sorting:
pathogen evolutionary history does
not match the transmission history
of the outbreak.

* High mutation rates and/or long
incubation times result in within-
host diversity.

* Further complication arises due to
multi-strain infection or weak
transmission bottleneck.

- S— H,

Weak
Bottleneck

o

Ik
1]

S1

Within-host
Evolution
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Simulation Results
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Simulations (with complete sampling) show that:

(a) Weak Transmission Bottleneck needs to be considered for inferring and sampling the solutions.

(b) Naive sampling is infeasible for large outbreaks

(c) TiTUS uniformly samples the solution space




Selection Criteria

10
| f : o3
= - 4 = =
g = [ 4 . £ e
: gl E 5
B : X T T~
-E i —{{ L}é ) dé '.-.'1
c . 5 . —_
u.2 0.2
([XN G
’ ’ i A i hie pefcentile ) unsampled lineage number pereentile joint parcentile

Following selection criteria are proposed (for a completely sampled outbreak): - H
(a) Number of transmitted strains in the outbreak i
(b) Number of unsampled lineages in the outbreak v l l
(c) We find that optimal performance is achieved at percentile threshold of 0.01 1




TiTUS vs. Previous Work

m

LREL
Contact Map

P

Simple Recursion Contact Map

L

Contact Map
Direct Transmission Constraint

NP-complete, #P-complete
LSB

‘ Contact Map
D

irect Transmission Constraint
Strong Bottleneck

P

TiTUS Contact Map + Unique Infector

Contact Map + Unique Infector +

STraTUS[2] Strong Transmission Bottleneck

Contact Map + Unique Infector +
Kenah|[3] Strong Transmission Bottleneck +
Order of Infection

[2] Matthew D Hall and Caroline Colijn. Molecular biology and Evolution (2019).
[3] Eben Kenah et al. PLoS Computational Biology (2016).



