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Motivation

Neural networks are a parallelization “success story”

Hundreds of thousands of research hours in optimizing compilers
Libraries (numpy, TensorFlow, pyTorch, …)

Hardware (CPU, GPU, TPU)

Can we leverage all this work for weighted model counting?

Yes! Using tensor network contraction
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Overview

Can we leverage neural network parallelization for weighted model counting?

Yes! Using tensor network contraction (TNC)

• [Biamonte et. al., 10] Algorithm for exact, unweighted model counting with TNC

• [Dudek et al., 19] Algorithm & tool for exact, literal-weighted model counting with TNC

• [            ] This algorithm can be parallelized on multiple CPUs and GPU

Key Idea: Perform model counting via. a sequence of matrix multiplications
• Matrix multiplications are core operation in neural network algorithms  
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Background: Tensors and Tensor Contraction

A tensor is a multi-dimensional array, generalizing a matrix.

Tensor contraction is a generalization of matrix multiplication to tensors. 
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Idea: “Sum out over shared dimensions”
Can be implemented with transpose and matrix multiplication



1. Graph: Construct incidence graph 𝐺 = (𝑉, 𝐸)

2. Planning: Find a tree-decomposition of 𝐺

Tensor Contraction for WMC
Input: 𝐹 = (𝑥 ∨ 𝑦 ∨ ҧ𝑧) ∧ (𝑧 ∨ 𝑤), Literal-Weight function

Tree Decomposition of G
Nodes are labelled by variables and clauses
Requirements on labels based on clause structure
“Width” is maximum size of labels

[Dudek et al., 19]
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Use existing tools: Tamaki [Tamaki, 17], FlowCutter [Haman and Strasser, 18], htd [Abseher et al., 17]

• Anytime algorithms: find better and better plans given more time.

• Ultimately spend ~50% of total runtime on planning.

x

C

z

D

y w

z

w D

z C

z D

x C

y C



3. Execution: Process tree-decomposition from leaves to root to compute WMC

Tensor Contraction for WMC
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Parent processes results from children with a single tensor contraction

Can be viewed as preprocessing based on treewidth of incidence graph
• Generalizing [Samer and Szeider, 06] on SAT preprocessing to limit variable appearances.

Pass tensors from children to parent

• Theorem: Treewidth 𝑘⟹ tensors have ≤
4

3
(𝑘 + 1) dimensions

[Dudek et al., 19]
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Related Work
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What is passed from child to parent? What does each internal node do?

TensorOrder [Dudek et al., 19] Tensor Tensor Contraction

gpuSAT [Fichte et al., 18] Array Custom GPU Kernel

gpuSAT2 [Fichte et al., 19] Binary Search Tree Custom GPU Kernel

ADDMC [Dudek et al., 20] Algebraic Decision Diagram (ADD) ADD Multiplication

Model counting with tree decompositions [Samer and Szeider, 07]

Single CPU

GPU



TensorOrder [Dudek et al., 19]

Parallelizing Tensor Contraction for WMC
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Key Insight:
• On large benchmarks, runtime is dominated by just a few difficult tensor contractions
• Tensor contractions can each be individually parallelized using existing libraries (TensorFlow)

tensors tensor contraction

Parallelization TensorOrder2 [        ]



On-board GPU memory is limited
• Moving data in and out of on-board memory is expensive

Solution: Conditioning [Darwiche 01, Dechter 99]

Run algorithm separately for 𝐹 𝑥 ↦ 0 and 𝐹 𝑥 ↦ 1

• Planning: Can use the same tree-decomposition for #𝐹 𝑥 ↦ 0 and #𝐹 𝑥 ↦ 1

• Execution: Doubles execution time, but reduces the size of the largest tensor (by choosing 𝑥)

Greedily condition until all tensors fit entirely in on-board memory

Challenge 1: High-Memory Plans
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#𝐹 = #𝐹 𝑥 ↦ 0 + #𝐹 𝑥 ↦ 1



Overhead 1: Initialization of GPU (~1 second on startup)

Overhead 2: Per tensor contraction call

• Small tensor contractions are slower on the GPU than CPU

Solution: Hybrid Approach

• Use GPU for large contractions and CPU for small contractions

• Flexibility earned by using black-box matrix multiplication libraries

Challenge 2: GPU Overhead

10

Multi-CPU

GPU



We observe ~50% of total time is spent in the planning stage

• No prior work attempts to parallelize planning

• Little work on parallel tree-decomposition tools

Solution: Algorithm Portfolio [Xu et al., 08]

Developed a portfolio of tree-decomposition solvers

• Run multiple tree-decomposition tools in parallel

• Return best tree-decompositions

Experimental results: 

• Portfolio can nearly match VBS of all tree-decomposition tools

Applications to other treewidth-based algorithms

Challenge 3: Runtime of Planning Stage
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Tamaki FlowCutter htd



Experimental Evaluation

TensorOrder2: Parallel Weighted Model Counter

https://github.com/vardigroup/TensorOrder

1914 weighted, exact model counting benchmarks
• 1091 from Bayesian inference [Sang et al. 05] and 823 from various domains

Experiments run on Google Cloud
• Docker images

• 8x 2.3GHz cores, 32GB RAM

• NVIDIA Tesla V100 GPU
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https://github.com/vardigroup/TensorOrder


TensorOrder2 (GPU + portfolio planner) is 2nd best solver by PAR-2 score.

Overall, TensorOrder2 is the fastest solver on 200 benchmarks.
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* With pmc-eq preprocessing used for all counters (time included in graph) [Lagniez and Marquis, 14]



Overview and Conclusion

Key Idea: Tensor networks represent WMC as a sequence of matrix multiplications

Contributions:
• Parallelized WMC using high-level APIs to run execution stage on CPU and GPU
• Parallelized planning stage with a portfolio of tree-decomposition solvers

TensorOrder2 is fastest solver on 200 benchmarks (out of 1914)
https://github.com/vardigroup/TensorOrder

Future Work:
• Better leverage parallel hardware
• Improve planning portfolio
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https://github.com/vardigroup/TensorOrder

