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Introduction
Combinatorial optimization problems are ubiquitous in the field of computational biology — from cancer
phylogenetics to molecular epidemiology. Typically, these problems are NP-hard. As a consequence, linear
programming and integer programming solvers have become part of the standard toolkit for computational
biologists. However, these tools are not as effective in exploring uncertainty and degeneracy (non-uniqueness)
of optimal solutions to the computational problems. Here, we show three such applications in cancer phyloge-
netics and molecular epidemiology that can be solved efficiently by recent advances in approximate counting
and almost uniform sampling in SATISFIABILITY (SAT).

Transmission Network Inference
Motivation Recent developments in sequencing technologies have made molecular epidemiology an indis-
pensable tool for real-time outbreak management, public health policies and devising disease control strategies
during disease outbreak. This is evident from the fact that since the first reported case of COVID-19 on 24th

December 2019, 33,656 consensus sequences [1] and 7,810 bulk sequencing samples [2] have been published
by the research community.

Problem statement Given epidemiological and genomic data, the key challenge is to infer the transmission
history of the outbreak. We consider a given timed phylogeny of the pathogen samples and a contact map
for the infected hosts indicating putative transmissions. Each leaf of the given phylogeny is labeled by the
infected host from which the sample was collected (see Figure 1(a)). Our goal is to find a host labeling for the
internal vertices of the phylogeny that yields the most parsimonious transmission history that agrees with the
given contact map. Parsimony can be defined either in terms of the number of transmitted pathogen strains or
the number of transmission events in the outbreak. As many parsimonious solutions exist, we seek to sample
uniformly from the solution space.

SAT formulation We introduce Boolean variables to encode the labelings of the internal vertices of the
phylogeny and transmission edges between infected hosts. The constraints of the optimization problem can
be easily described in CNF form.

Results We applied this approach to find the transmission history of the 2014 Ebola outbreak between dif-
ferent chiefdoms in Sierra-Leone [3] and the transmission chain in an HIV-1 outbreak involving 11 patients
from 1988 to 2006 [4].

Phylogenetic Deconvolution of Bulk DNA samples
Motivation The evolutionary process of individual cancers is appropriately modeled by a phylogenetic tree.
Tumor phylogenies enable important applications that aim to improve our understanding of tumorigenesis
and guide personalized response to treatment. However, multiple phylogenies with distinct topologies may be
inferred from the same bulk DNA sequencing data of a tumor. To overcome this challenge, current methods
aim to sample trees with maximum likelihood, but empirical and theoretical evidence shows that such methods
are not sampling the solution space uniformly [5].

Problem statement Given bulk DNA sequencing data ofm samples and nmutations of a tumor in the form
of frequency matrix F ∈ [0, 1]m×n. The frequencies F correspond to unknown mixtures U ∈ [0, 1]m×n of
nodes of an unknown phylogenetic tree T , whose nodes are mutations. Our goal is to sample from all possible
complete perfect phylogenetic trees such that the frequency of each mutation is greater or equal to the sum of
the frequencies of its children for all samples. This restriction is also known as the sum condition (SC).
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SAT formulation We use the ancestry graph GF h to help us formulate the problem, which is a directed
acyclic graph whose vertices correspond to the n mutations and whose edges (i, j) indicate that the frequency
of i is greater or equal to the frequency of j for all samples. Our goal is to sample spanning arborescences in
GF that satisfy (SC) (see Fig. 1b). We introduce Boolean variables to indicate the root vertex, presence/ab-
sence of each edge, and pairwise reachability. The constraint of T being a spanning tree of GF is formulated
using clause containing these variables. Moreover, we discretize the frequencies by multiplying a large integer
and using a bit vector representation. We model (SC) using bit vector arithmetic.

Results We applied this method to a simulated dataset and an maximum likelihood extension of the method
to a non-small cell lung cancer cohort (tracerX) [6]. We showed that our method outperforms PhyloWGS [7],
an existing MCMC-based method, in terms of sampling uniformity and running time, and report trees with
high quality.

Sampling 1-Dollo Phylogenies
Motivation While bulk sequencing technology yields sequence reads from a large collection of cells, single
cell sequencing (SCS) technology allows us to determine the presence of single-nucleotide variants (SNVs)
in individual cells of a tumor. Given SCS data of a patient’s tumor, we seek a phylogenetic tree that models
the evolutionary history of cells within the tumor. This can help one better understand the mechanisms behind
intra-tumor heterogeneity and identify targets for treatment.

Problem statement Our goal is to use SCS data to find a phylogenetic tree that explains the evolutionary
history of cells within a tumor. The leaves of this tree are labelled by cells observed at the time of sequencing,
the internal vertices are labelled by ancestral clones of cells within the tumor, and each edge is labeled by
a mutation gain or a mutation loss. Under the 1-Dollo parsimony model, each mutation is gained exactly
once and can be lost at most once due to a copy number aberration. When we allow for losses and account
for possible errors in the sequencing data, we find that there are many possible 1-Dollo Phylogenies for
one patient’s SCS data. We also find that after correcting for errors, cells generally originate from a small
number of clones and mutations cluster together on branches of the tree. So our goal is to uniformly sample
phylogenies for SCS data that have a feasible number of false positives and false negatives and contain a
pre-determined number of cell and mutation clusters.

SAT formulation We introduce Boolean variables that represent false positives, false negatives, losses, and
cell and mutation clustering. A 1-Dollo Phylogeny can be represented as a matrix that does not contain any of
25 forbidden submatrices [8], so we add clauses to enforce the absence of each of the forbidden submatrices
in a potential solution. We also use a half/full adder approach to constrain the number of false positives and
false negatives and enforce the number of cell and mutation clusters for each solution.

Results We applied this method to a simulated datasets with up to 15 cells and 15 mutations. We are
currently looking into a cutting planes approach to make this method more feasible on real data.
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Figure 1: (a) Transmission Network Inference instance – The input consists of a timed phylogeny T with
a leaf labeling ` and a contact map C. Each leaf of T corresponds to a pathogen sample collected from
an infected host. The output is the internal vertex labeling `′ of the timed phylogeny and the transmission
network S′. (b) Phylogenetic Deconvolution instance – An example of input frequency matrix F with
m = 1 bulk samples and n = 4 mutations that has a set T (F ) of five solutions. Clauses that enforce the
presence of a single root vertex are shown. (c) 1-Dollo problem instance – The input is in the form of a
binary matrix, B ∈ {0, 1}m×n. After correcting for errors (marked in red) and clustering, we aim to find a
1-Dollo completion matrix A ∈ {0, 1, 2}s×t. Entries that are 2 in A represent mutation clusters that were
lost due to a copy number aberration. The rows of a 1-Dollo completion matrix are the leaves of a 1-Dollo
phylogeny T .
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