
Model Counting Competition 2021:

Call for Benchmarks/Participation

Johannes K. Fichte Markus Hecher

February 19, 2021

Abstract

Model counting is a very vibrant field that provided both recent ad-
vances in theory as well as in practical solving including various applica-
tions. Various solving techniques have been established and implemented
into search engines ranging from SAT-based solving with caching, knowl-
edge compilation, approximate solving by means of sampling using SAT
solvers, or dynamic programming. There have been also successful imple-
mentations for parallel and distributed computation as well as massively
parallel computation approaches. An initial competition to compare the
advances and the applicability of solvers has been established in 2020,
which will go into its next iteration.

In this document, we provide a call for benchmarks and participation.
We briefly summarize timeline, formats, requirements, and evaluation set-
ting used in the competition.

More information on the competition can be found at modelcounting.org.

Contents

1 Call for Benchmarks 2

2 Data Format (DIMACS-like) 3
2.1 Input Format . 4
2.2 Output Format . 6
2.3 Examples . 8

3 Problems 11
3.1 Preliminaries . 11
3.2 Competition Problems . 11
3.3 Output log10-Notation . 12

1

https://modelcounting.org/

4 House Keeping 12
4.1 Output: Return Codes . 13
4.2 Handling of Temporary Files . 13
4.3 Signal Handling . 13
4.4 Tooling/Solver Calls . 13

5 Submission Requirements 14
5.1 Type of Solver . 14
5.2 Publication of the Submission . 14

6 Expected Timeline 15

7 Arena 15
7.1 Instances . 15
7.2 Cluster . 16
7.3 Timeouts . 16
7.4 Judges . 16
7.5 Evaluation Measure . 16

8 Contact 18

1 Call for Benchmarks

https://mccompetition.org/2021/mc_description

Setting Model counting is very vibrant field that provided both recent ad-
vances in theory as well as in practical solving including various applications.
State-of-the-art search engines rely on techniques from SAT-based solving, knowl-
edge compilation, dynamic programming, or approximate solving by means of
sampling using SAT solvers. The success of solving various problems, in the
area of satisfiability and declarative languages in the last two decades, can be
seen in both the availability of numerous efficient solver implementations and
the growing number of applications. Designing efficient solvers requires both
understanding of the fundamental algorithms underlying the solvers, as well as
in-depth insights into how to implement the algorithms for obtaining efficient
and robust solvers. Several competitive events are regularly organized for differ-
ent declarative solving paradigms to evaluate available solvers on a wide range
of problems. Winners of such events often set new standards in the area. The
Model Counting (MC) Competition [FHH20] aims to identify new challenging
benchmarks and to promote new solvers for the problem as well as to compare
them with state-of-the-art solvers.

Benchmarks Challenging and representative benchmarks are essential to per-
form significant comparisons of solvers. We invite submissions of both real world
benchmarks and benchmark generators to ensure a diverse benchmark set for

2

https://mccompetition.org/2021/mc_description

the competition. In the case of (randomly) generated benchmarks we would
be happy if authors also publicly provide the generator. Submissions of real
world benchmarks are most welcome no matter if they come directly from an
application or if they have been obtained via a translation from another for-
malism. Note that last year’s instances are publicly available. Please do not
send us those instances or permuted versions again. We encourage contribu-
tors to provide the instances as a dataset on the public data repository Zenodo
(https://zenodo.org/) for submission. Since all instances will be made avail-
able to the community after the event, we expect that the copyright of the
dataset allows for publication under a CC-BY license. If instances are sensitive
(e.g., infrastructure/health-care), sufficient anonymization has to be applied
prior to submission.

Selection From existing and submitted benchmarks, we will select instances
on which we evaluate submissions in MC2021. Instances and mappings will be
publicly released on Zenodo.

Submission Before March 5, 2021, contributors of benchmarks are expected
to

• Register for benchmark submission at tinyurl.com/fm7ucg3z, and decide
between (A) providing us with a link to download the instances or (B)
asking us for an upload space to place the instances.

• Submissions are expected to be as one tar-archive of bz2 compressed files
in the format described below in Section 2.

• The submission has to contain a short abstract (at most 2 pages single
column pdf) describing the dataset (and generator if applicable).

• We appreciate if the submissions contain in addition the following infor-
mation:

– a file (checksums.txt) listing the sha256 checkum for each uncom-
pressed, submitted instance and

– a file (counts.txt) listing the known (weighted/projected) model
counts, the expected hardness, and if applicable in addition the run-
time and used tool to obtain the result.

2 Data Format (DIMACS-like)

The input format is similar to the formats used for last year’s iteration. But
in order to provide a more uniform input without re-encoding headers between
tracks (and SAT solvers), we moved additional descriptions lines that would be
interpreted as comments in SAT solvers.

3

https://zenodo.org/
https://tinyurl.com/fm7ucg3z

2.1 Input Format

In the Model Counting Competition 2021, we use a DIMACS CNF-like in-
put format [TCC+93]. The format extends the format used in SAT competi-
tions [JBRS12, BFH+20]1 by introducing statements for weights and projections
similar as in Cachet [KS05] or Ganak [SRSM19].

The following description gives an idea on the expected input format:

c c this is a comment and will be ignored

c c REPRODUCIBILITY LINE MANDATORY FOR SUBMITTED BENCHMARKS

c r originUrl/doi descUrl/doi [generatorUrl/doi]

c c HEADER AS IN DIMACS CNF

p cnf n m

c c OPTIONAL MODEL COUNTING HEADER

c t mc|wmc|pmc

c c PROBLEM SPECIFIC LINES for wmc|pmc

c p ...

c p ...

c c CLAUSES AS IN DIMACS CNF

-1 -2 0

2 3 -4 0

c c this is a comment and will be ignored

4 5 0

4 6 0

In more details (note that we print symbols in typewriter font):

• Line separator is the symbol \n. Expressions are separated by space.

• A line starting with character c r is a comment. The solver may ignore it.
The line aims for open data and reproducibility of the submitted instances
expressing the origin of the benchmarks. The line will be added after
competition when publishing the instances. originUrl/doi states where
the instance can be downloaded (either as URL or DOI). descUrl/doi
links to a description of the benchmarks. generatorUrl/doi provides an
optional URL/DOI to where a problem generator can be found.

• A line starting with character c t is a comment. The starting character
will be followed by mc, wmc, pmc, or pwmc indicating possible problem
specific lines starting with cs in the file. If present, the line will occur
prior to problem specific line. The solver may ignore it.

• A line starting with character c p provides problem specific details for
weighted or projected model counting. Lines may occur anywhere in the
file. We assume that lines are consistent and provide no contradicting
information. We provide more details on its meaning below.

1See, for example, http://www.satcompetition.org/2009/format-benchmarks2009.html

4

http://www.satcompetition.org/2009/format-benchmarks2009.html

• Lines starting with character c followed by a second character differing
from p and s are comments and can occur anywhere in the file. For
convenience, we provide comments by lines starting with c c.

• Variables are consecutively numbered from 1 to n.

• The problem description is given by a unique line of the form p cnf

NumVariables NumClauses that we expect to be the first line (except
comments). More precisely, the line starts with character p (no other
line may start with p), followed by the problem descriptor cnf, followed
by number n of variables followed by number m of clauses each symbol is
separated by space each time.

• The remaining lines indicate clauses consisting of decimal integers sepa-
rated by space. Lines are terminated by character 0. The Line 2 -1 3

0\n indicates the clause “2 or not 1 or 3” (v2 ∨ ¬v1 ∨ v3). If more lines
than announced are present, the solver shall return a parser error and
terminate without solving the instance.

• Empty lines or lines consisting of spaces/tabs only may occur and can be
ignored.

Weighted Model Counting For weighted model counting, we introduce op-
tional problem specific lines:

c p weight 1 0.4 0

c p weight -1 0.6 0

c p ...

In more details (note that we print symbols in typewriter font):

• The weight function is given by lines of the form c p weight ` w` 0

defining the weight w` for literal `, where 0 ≤ w`. The weight will be
given as floating point (e.g., 0.0003) with at most 9 significant digits
after the decimal point, or in 32-bit scientific floating point notation (e.g.,
1.23e+4), or as fraction (e.g., 3/10) consisting of two integers separated
by the symbol /.

• We expect that the submission tests instances and output if it cannot be
handled correctly. For example, if an instance specifies a function that has
more than 9 significant digits (e.g., 0.00000000009), larger floating point
values, or large fractional values. In such a case, the solver should output
a parsing error as specified in the return code section.

• We will provide only instances where 0 ≤ w` ≤ 1 and w¬` + w` = 1.

• If a weight w` is defined for a literal ` but ¬` is not given or ¬x, we assume
w¬` = 1− w` (assume that ¬¬a = a). In other words:

c p weight 1 0.4 0

5

or

c p weight -1 0.6 0

are the same as

c p weight 1 0.4 0

c p weight -1 0.6 0

• If the solver can handle weights w` > 1 or w`+w¬` > 1 unless w` = w¬` =
1, the solver must output a warning. Otherwise, the solver must output
an error on those instances.

• For compatibility, with #SAT we say that if for a variable x, there is
neither a weight for x nor ¬x given, it is considered 1.
Note: this differs from the format used in Cachet.

Projected Model Counting For projected model counting, we introduce
optional problem specific lines:

c c INDICATES VARIABLES THAT SHOULD BE USED

c p show varid1 varid2 ... 0

....

c c MORE MIGHT BE GIVEN LATER

c p show varid7 varid23 ... 0

In more details (note that we print symbols in typewriter font):

• Projection variables will be given by lines starting with c p show followed
by the identifier of the variables. Lines describing to add variables to a
projection set may occur anywhere in the files and will be terminated by
symbol 0.

Note: if all variables are stated using show, we consider model counting. if no
variables are stated the problem is simply to decide satisfiability.

2.2 Output Format

We expect that the solver outputs result to stdout in the following format.

c o This output describes a result of a run from

c o a [weighted|projected] model counter.

c o

c o The following line keeps backwards compatibility

c o with SAT solvers and avoids underflows if result is 0.

c o MANDATORY

s SATISFIABLE|UNSATISFIABLE|UNKNOWN

c o The following solution line is optional.

6

c o It allows a user to double check whether a solver

c o that provides multiple options was called correct.

c o

c o MANDATORY

c s type [mc|wmc|pmc]

c o The solver has to output an estimate in scientific notation

c o on the solution size, even if it was an exact solver.

c o MANDATORY

c s log10-estimate VALUE

c o The solver outputs the solution in its highest precision.

c o MANDATORY

c s SOLVERTYPE PRECISION NOTATION VALUE

c o OPTIONAL

c o InternalValueForOpt=X

c o Internal=X

In more details:

• While the solver may use a line staring with c for comments in the output,
we suggest to use lines starting with c o to indicate a comment.

• The solver has to announce whether the instance is satisfiable or unsatisfi-
able by a line starting with s followed by SATISFIABLE or UNSATISFIABLE.
The solver may output UNKNOWN, but is not allowed to output any other
value than these three if a line starting with s is present.

• The solver has to announce an estimate on the solution by a line starting
with c s log10-estimate VALUE where VALUE is a string representing
the result (model count/weighted model count/projected model count)
in log10-Notation (see Section 3.3) of double precision, i.e., 15 significant
digits.

• The output is has to be announced by a line starting with c s followed by
strings indicating the solver type, the precision, the notation, and the re-
sult. The solver developer may use for SOLVERTYPE the following strings:
approx and exact. In place of PRECISION, the solver developer has to
specify which the internal precision the solver used, allowed values are arb,
single, double, quadruple, or other values according to IEEE754 Stan-
dard. For NOTATION, the developer may chose log10, float, prec-sci,
or int. Then, in place of VALUE, the solver has to output its computed
result.

Note: If the solver developer announces as output a higher precision than
the actual solver theoretically allows, we reserve the right to disqualify all
submissions by the team.

• The solver may output a result in log10 notation which is similar to the
format used in the probabilistic inference competitions UAI [GRS+16].

7

For computing the relative accuracy of the solution of a solver, we refer
to Section 7.5.

• If the solver consists of a run script, which calls a pre-processor, consists of
multiple phases, or consists of a solving portfolio, we expect the developer
to output by a comment line which tool was started, what parameters it
used, and when the tool ended. Preferably as follows:
c o CALLS(1) ./preproc -parameters

c o stat CALL1 STARTED RFC3339-TIMESTAMP

. . .
c o stat CALL1 FINISHED RFC3339-TIMESTAMP

c o CALLS(2) ./postproc -parameters

. . .

• We suggest that the solver outputs internal statistics by lines starting with
c o DESCRIPTION=VALUE or c DESCRIPTION : VALUE.

2.3 Examples

The following sections provide a few brief examples for each track with expected
input and output.

Model Counting

Example 1. The following text describes the CNF formula (set of clauses)

{{¬x1,¬x2}, {x2, x3,¬x4}, {x4, x5}, {x4, x6}}.

c c This file describes a DIMACS-line CNF in MC 2021 format

c c The instance has 6 variables and 4 clauses.

p cnf 6 4

c t mc

-1 -2 0

2 3 -4 0

c c This line is a comment and can be ignored.

4 5 0

c The line contains a comment and can be ignored as well.

4 6 0

A solution is given as follows, but can also be modified according to the technique
of the solver:

c o This file describes a solution to a model counting instance.

s SATISFIABLE

c s type mc

c o The solver log10-estimates a solution of 22.

c s log10-estimate 1.342422680822206

c o Arbitrary precision result is 22.

c s exact arb int 22

8

Weighted Model Counting

Example 2. The following text describes the CNF formula (set of clauses)

{¬x1,¬x2}, {x2, x3,¬x4}, {x4, x5}, {x4, x6}}

with weight function {x1 7→ 0.4,¬x1 7→ 0.6, x2 7→ 0.5,¬x2 7→ 0.5, x3 7→ 0.4,¬x3 7→
0.6, x4 7→ 0.3,¬x4 7→ 0.7, x5 7→ 0.5,¬x5 7→ 0.5, x6 7→ 0.7,¬x6 7→ 0.3}.

c c This file describes a weighted CNF in MC 2021 format

c c with 6 variables and 4 clauses

p cnf 6 4

c t wmc

c c Weights are given as follows, spaces may be added

c c to improve readability.

c p weight 1 0.4 0

c p weight 2 0.5 0

c p weight 3 0.4 0

c p weight 4 0.3 0

c p weight 5 0.5 0

c p weight 6 0.7 0

-1 -2 0

2 3 -4 0

c this is a comment and will be ignored

4 5 0

4 6 0

c same

The solution should be given in the following format (modified according to the
technique of the solver):

c o This file describes a solution to a weighted

c o model counting instance.

s SATISFIABILE

c s type wmc

c o This file describes that the weighted model count is 0.345

c o

c s log10-estimate -0.460924

c s exact double float 0.346

Example 3 (Optional). The following text describes the CNF formula (set of
clauses)

{¬x1, x2}, {x3,¬x2}, {x2, x1}, {x3, x2}}

with weight function {x1 7→ 0.1,¬x1 7→ 0.1, x2 7→ 0.1,¬x2 7→ 0.9, x3 7→ 0.0235,
¬x3 7→ 0.0125} including a problem description line and two comments.

9

c c This file describes a weighted CNF in MC 2021 format

c c with 3 variables and 4 clauses

p cnf 3 4

c t wmc

-1 2 0

3 -2 0

2 1 0

3 2 0

c p weight 1 0.1

c p weight -1 0.1

c p weight 2 0.1

c p weight 3 0.0235

c p weight -3 0.0125

The solution should be given in the following format:

c o WARNING

c o L9:Sum of positive and negative literal is not equal to 1.

c o WARNING

c o L12:Sum of positive and negative literal is not equal 1.

c o This file describes a solution to a weighted

c o model counting instance.

s SATISFIABILE

c s type wmc

c o This file describes that the weighted model count is

c o 0.0004700000000000000532907051822

c s type wmc

c s log10-estimate -3.327902142064282

c s exact arb log10 -3.3279021420642824863435269891

Projected Model Counting

Example 4. The following text describes the CNF formula (set of clauses)

{¬x1,¬x2}, {x2, x3,¬x4}, {x4, x5}, {x4, x6}}

with projection set {x1, x2} including a problem description line and two com-
ments.

c c This file describes a projected CNF in MC 2021 format

c c with 6 variables and 4 clauses and 2 projected variables

p cnf 6 4 2

c t pmc

c p show 1 2

-1 -2 0

2 3 -4 0

10

cc this is a comment and will be ignored

4 5 0

4 6 0

A solution can be given in the following format:

c o This file describes that the projected model count is 3

s SATISFIABILE

c s log10-estimate 0.47712125471966

c s type pmc

c s exact arb int 3

3 Problems

In the following section, we briefly describe the considered problems.

3.1 Preliminaries

Let U be a universe of propositional variables. A literal is a variable x or its
negation ¬x. We call x positive literal and ¬x negative literal. A clause is a
finite set of literals, interpreted as the disjunction of these literals. A (Boolean)
formula (in conjunctive normal form) is a finite set of clauses, interpreted as the
conjunction of its clauses. An assignment is a mapping τ : X → {0, 1} defined
for a set X ⊆ U of variables. For x ∈ X, we define τ(¬x) = 1 − τ(x). By 2|X|

we denote the set of all assignments τ : X → {0, 1}. By τ−1(b) we denote the
preimage τ−1(b) := {a | a ∈ X, τ(a) = b} of the truth assignment τ for some
truth value b ∈ {0, 1}. The formula F under assignment τ is the formula Fτ
obtained from F by (i) removing all clauses c that contain a literal set to 1
by τ and then (ii) removing from the remaining clauses all literals set to 0 by
τ . An assignment τ satisfies a given formula F if Fτ = ∅. For a satisfying
assignment τ , we call the set M of variables that are assigned to true by τ a
model of F , i.e., M(τ) = {x | x ∈ τ−1(1)}.

3.2 Competition Problems

Let Mod(F) be the set of all models of F , i.e.,

Mod(F) = {τ−1(1) | Fτ = ∅, τ ∈ 2|F |}.

Problem: Model Counting (MC)

Input: A Boolean formula F in conjunctive normal form.

Task: Output the number of models of the formula F ,

mc(F, P) := |Mod(F)| ,

which we call model count of F .

11

Problem: Weighted Model Counting (WMC)

Input: A Boolean formula F in conjunctive normal form and
a function w : lits(F) → [0, 1], which we call weight
function.

Task: Output wmc(F,w) :=∑
M∈Mod(F)

(∏
v∈var(F)∩M

w(v) ·
∏

v∈var(F)\M

w(¬v)
)
,

which we call weighted model count of F wrt w.

Problem: Projected Model Counting Problem (PMC)

Input: A Boolean formula F in conjunctive normal form and
a set P ⊆ var(F) of projection variables.

Task: Output pmc(F, P) :=

|{M ∩ P |M ∈ Mod(F)}| ,

which we call projected model count of F wrt P .

3.3 Output log10-Notation

We say that an output is in log10-Notation if the result of the problem MC, WMC,
or PMC, respectively, is the value v, but the solver outputs log10 v.

4 House Keeping

By March 2020, we hope to provide runtime scripts and a few test cases that
allows you to check compatibility with the input format github.com/daajoe/

mc2021. While the requirements below might seem tedious, it really is necessary
to allow for stable runs with cluster systems were specialized benchmarking
frameworks cannot be installed due to restrictions or strict policies.

Last year, some runtime scripts were writing large files onto disks (which re-
sulted in problems on one cluster; as we ran over-quota) or would not terminate
sub-solvers, if we had to terminate a program, or would hard-code timeouts.

For simplicity, we suggest that adapt our provided wrapper scripts (see
https://github.com/daajoe/mc2021). We will also provide scripts to allow
for quick transformation of the old format. To avoid errors in the tooling, we
suggest that teams consider the use of a recent fuzzing tool for testing the
solver, e.g., [UWK20].

Note that we will test whether the submission (both solver and starting script)
can handle the requirements correctly. If the submission fails a basic test, we
reserve the right to disqualify the solver.

12

https://github.com/daajoe/mc2021
https://github.com/daajoe/mc2021
https://github.com/daajoe/mc2021

4.1 Output: Return Codes

We suggest that the submission passes return codes from the pre-processors/
solvers and that the submission gives a return code zero only if the instance was
solved.

4.2 Handling of Temporary Files

We will specify a temporary path for storing files, we will provide the location
in both the environment variable $TMPDIR and parameter --tmpdir=path to
allow easy handling in compiled submissions or submissions that use wrapper
scripts. The path will preferably be space on the shared memory (/run/shm).
You are not allowed to try to store files anywhere else other than in the given
location for temporary files. If you create a temporary file consider to use
TMPDIR=$(dirname $(mktemp -u -t tmp.XXXXXXXXXX)) in bash to create a
temporary file or the according function in your script language. If we find rm

filename, rm -r projection, or rm * or something similar in your script,
your submission will be disqualified. We do not want anyone to use such sub-
mission scripts.

4.3 Signal Handling

If the solver receives the unix signal 15/SIGTERM, the solver has to terminate
itself and any child process within 2 seconds. The submission may specify, which
sub-solver was terminated. You do not required to cleanup temporary files. If
the solver receives the unix signal 2/SIGINT, the solver has to terminate within
10 seconds, but shall cleanup any temporary files.
Since various scripts last year produced a variety of errors, we highly encourage
the developers to create submission scripts, which provide at least basic fail safe
behavior. In order to save valuable time when preparing submissions, we provide
you with templates. The files mysubmissionX.sh and mysubmissionX.py in
the github repository (https://github.com/daajoe/mc2021) should provide a
good idea on to run the instances. Feel free to adapt the scripts or copy from
them.

4.4 Tooling/Solver Calls

Please, prepare your submission with StarExec virtual machine. For details,
see: https://www.starexec.org/starexec/public/about.jsp.

In addition, place a start script named as your submission-name ending with a
file extension in the usual way. The wrapper/ELF should be capable of reading
the instance both from stdin and a textfile, which is given as first (unnamed)
parameter. We will provide the following parameters:

13

https://github.com/daajoe/mc2021
https://www.starexec.org/starexec/public/about.jsp

Parameter/Env Description

$TMPDIR Path to the temporary directory.
--tmpdir=/givenpath Path to the temporary directory.

--maxrss=X Size (integer) of the max available RAM in GB.
--maxtmp=X Size (integer) of the max available TMP in GB.
--timeout=X Runtime limit in seconds.

--task=X Solver Task X ∈ {mc,wmc,pmc}.

5 Submission Requirements

The number of submissions is limited to two per team. An author may be part of
only one exactly one team. This requirement is valid over all tracks. Note that
is is a quite weak limitation as we announce the problem to the script/solver
and a team can prepare a submission for multiple tracks.

5.1 Type of Solver

Portfolio solvers or pre-processors may be used, but the submission shall an-
nounce which tool is running in each step (see above).

Track 1: We only allow exact solvers. If your solver does not allow for arbi-
trary precision, you need to specify it in the solution accordingly.

Track 2: We allow for exact as well as approximate solvers.

Track 3: We allow for exact as well as approximate solvers. Exact solvers will
receive a preference bias in the measurement.

5.2 Publication of the Submission

Each team has to publish all final submissions on the public data repository
Zenodo two weeks after the submission deadline. The Zenodo repository has to
fulfill the following requirements:

1. Provide a recognizable name.
We suggest “MC2021 (Submission): Team/SubmissionName”).

2. Provide the own solver as binary (ELF 64bit). The binaries need to be
statically linked (no external dependencies to libc etc.). All necessary
submission scripts have to be included. If the submission uses an external
third party library, which is not under an open source license, we expect
that a script for downloading the library is included. Libraries, which
require a registration or are not free for academic use, are not allowed.

3. We highly encourage solver developers to publish the source code in the
data repository and give a standard open source license.

14

4. Place a PDF that briefly describes your submission. Use the article style,
single column, and at maximum 2 pages.

6 Expected Timeline

Date

January 10, 2021 Announcement of the challenge (Tracks)
February 19, 2021 Format Description Online
February 21, 2021 Call for Benchmarks

March 15, 2021 Test Instances are available
March 19, 2021 Benchmarks (submit ASAP)

Please use the Form tinyurl.com/fm7ucg3z

March 25, 2021 Intent to Participate
Please use the Form tinyurl.com/2ys3tz4v

April 10, 2021 Public Instances are available
April 15, 2021 Submission of the Solvers (Feedback Phase starts)

April 30, 2021 Last Update to submissions (End of Feedback Phase)
May 10, 2021 Evaluation Phase starts

May 30, 2021 Submissions + Descriptions (Zenodo)
Please use the Form tinyurl.com/10v5vw38

July 8, 2021 Presentation of the Results

7 Arena

The following briefly describes the evaluation setting of the competition.

7.1 Instances

The instance set will contain 200 instances of which we will make the even num-
bered instances (trackX_000.ecnf, trackX_002.ecnf, . . ., trackX_198.ecnf)
public for all participants during the testing phase of the solvers. The private
instances (trackX_001.ecnf, trackX_003.ecnf, . . ., trackX_199.ecnf) will be
used for the final evaluation and disclosed after the submission deadline. We
will run two exact solvers on the competition instances with a timeout of at
most 3 days to pre-determine the solution. We will only use instances on which
the solvers agreed if the instance was solved within the timeout. However, we
may use instances, which could not be solved. Note that there will be instances
of which we do not know the solution. We will not apply pre-processing to
the instances. It might make sense to spend some time on choosing the right
pre-processor and decide on the runtime you want to spend for pre-processing.

15

https://tinyurl.com/fm7ucg3z
https://tinyurl.com/2ys3tz4v
https://tinyurl.com/10v5vw38

7.2 Cluster

As we have seen last year, we might not be able to fix the cluster environment
in advance due to unexpected external circumstances. However, we will use the
clusters in the following order and only move to the next, in case of backup.

1. StarExec: starexec.org/starexec/public/machine-specs.txt

2. Taurus (ISLAND 4–6 Haswell):
doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium

node_topology; Description

3. Cobra:
model name : Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

cache size : 30720 KB

Linux 4.4.0-184-generic

ldd (Ubuntu GLIBC 2.23-0ubuntu11.2) 2.23

gcc (Ubuntu 5.4.0-6ubuntu1 16.04.12) 5.4.0 20160609

We run instances at base-frequency, at most one process per memory channel,
and transparent huge pages activated.

7.3 Timeouts

Track 1: 3600 seconds (total 2 days?)

Track 2: 3600 seconds (total 2 days?)

Track 3: 3600 seconds (total 2 days?)

While you may use the linux program timeout in your script. Please, do not
hardcode timeouts. Make sure that your submission script can handle the given
timeout in seconds (see above).

7.4 Judges

tba

7.5 Evaluation Measure

Disqualification The solver has to satisfy all requirements specified above
and to pass few simple test cases. Among those test cases will be additionally 10
instances (5 public, 5 private) of which the solution is known. If a solver fails to
produce a correct solution (within the expected margin), it will be disqualified.

16

https://www.starexec.org/starexec/public/machine-specs.txt
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/HardwareTaurus
https://doc.zih.tu-dresden.de/hpc-wiki/pub/Compendium/HardwareTaurus/i4000.png
https://www.top500.org/system/178555/

Accepted Solutions A submission has to mark an instance as solved (return
code 0).

solved(I, S) :=

{
1, if solver S outputs return code 0 on instance I

0, otherwise

An instance that remains unsolved will be ignored. An instance will be marked
as accepted if the outputted solution is within a relative margin of error de-
pending on the track as given in Table 1.

Track t

Model Counting Track 0.1%
Weighted Model Counting Track 1.0%
Projected Model Counting Track 1.0%

Table 1: Expected accuracy of participating solvers.

A submission may output incorrect or not accepted solutions to solved in-
stances. However, all instances that were not accepted solutions will be listed
in the report. Furthermore, a submission might be disqualified, if it outputs a
not accepted solution to more than 20 solved private instances and more than
5 solved private where the solution was unknown.

Let vo refer to the outputted result by the submission (“observed value”)
and ve to the pre-computed result (“expected value”) in log10 notation. We
measure the margin of error by the relative percentage difference:

RLPD(ve, vo) :=
100

log10(e)
·

{
|(vo − ve)|, if vo in log10 notation

| log10(vo)− ve|, otherwise.

We consider an instance as accepted

accept(vo, ve) :=


1, ve = unknown and vo 6= unknown;

1, RLPD(ve, vo) ≤ t; and

0, otherwise.

where S(I) refers to the output of S on the instance I.

Scoring Function The task for a submission s is to optimize the number
of acceptably solved instances. In other words, for the given set I of private
instances, to maximize the following function:

score(S) :=
∑
i∈I

(
accept(vIe , v

I,S
o) · solved(I, S)

)
where vIe refers to the pre-computed solution for instance I and vI,So the solution
given by submission S on instance I.

17

Tie Breaking We will not break ties. If two submissions receive a tie, we will
assign the same places and the next place will be vacant.

8 Contact

• Main contact: benchmarks@mccompetition.org

• Competition website:
https://mccompetition.org/2021/mc_description

• For up-to-date information consult:
the Webpage at https://mccompetition.org/news or
our Slack Channel at https://mccompetition.slack.com/

Organizers

• Markus Hecher (TU Wien & Uni Potsdam)

• Johannes K. Fichte (UC Berkeley)

Scientific Partners

• Adnan Darwiche (University of California at Los Angeles)

• Arthur Choi (University of California at Los Angeles)

• Armin Biere (Johannes Kepler Universität Linz)

• Fahim Bacchus (University of Toronto)

• Jean-Marie Lagniez (CNRS at Centre de Recherche en Informatique de
Lens and Université d’Artois)

• Kenji Hashimoto (Nagoya University)

• Kuldeep S. Meel (National University of Singapore)

• Markus Hecher (TU Wien)

• Johannes K. Fichte (TU Dresden)

• Mate Soos

• Norbert Manthey

• Pierre Marquis (CNRS at Centre de Recherche en Informatique de Lens
and Université d’Artois)

18

mailto:benchmarks@mccompetition.org
https://mccompetition.org/2021/mc_description
https://mccompetition.org/news
https://mccompetition.slack.com/

References

[BFH+20] Tomáš Balyo, Nils Froleyks, Marijn J.H. Heule, Markus Iser, Matti
Järvisalo, and Martin Suda, editors. Proceedings of SAT Competition
2020: Solver and Benchmark Descriptions. University of Helsinki,
Department of Computer Science, 2020.

[FHH20] Johannes K. Fichte, Markus Hecher, and Florim Hamiti. Model
counting competition 2020: Competition instances. Zenodo, Novem-
ber 2020.

[GRS+16] Vibhav Gogate, Tahrima Rahman, Somdeb Sarkhel, David Smith,
and Deepak Venugopal. Uai 2016 inference evaluation. http://www.
hlt.utdallas.edu/~vgogate/uai16-evaluation/tuning.html,
2016.

[JBRS12] Matti Järvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Si-
mon. The international SAT solver competitions. In AI Magazin.
The AAAI Press, 2012.

[KS05] Henry Kautz and Tian Sang. Model counting using component
caching and clause learning. https://www.cs.rochester.edu/u/

kautz/Cachet/cachet-wmc-1-21.zip., 2005.

[SRSM19] Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel.
GANAK: A scalable probabilistic exact model counter. In Sarit
Kraus, editor, Proceedings of the 28th International Joint Confer-
ence on Artificial Intelligence (IJCAI’19), pages 1169–1176, Macao,
China, 2019. IJCAI.

[TCC+93] Michael Trick, Vavsek Chvatal, Bill Cook, David Johnson, Cathy
McGeoch, and Bob Tarjan. The 2nd DIMACS implementation chal-
lenge: 1992–1993 on NP hard problems: Maximum clique, graph
coloring, and satisfiability. http://archive.dimacs.rutgers.edu/
pub/challenge/sat/benchmarks/, 1993.

[UWK20] Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. Testmc:
Testing model counters using differential and metamorphic testing.
In Claire Le Goues and David Lo, editors, Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engi-
neering (ASE’20), pages 709–721, 2020.

19

http://www.hlt.utdallas.edu/~vgogate/uai16-evaluation/tuning.html
http://www.hlt.utdallas.edu/~vgogate/uai16-evaluation/tuning.html
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
https://www.cs.rochester.edu/u/kautz/Cachet/cachet-wmc-1-21.zip
http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/
http://archive.dimacs.rutgers.edu/pub/challenge/sat/benchmarks/

	Call for Benchmarks
	Data Format (DIMACS-like)
	Input Format
	Output Format
	Examples

	Problems
	Preliminaries
	Competition Problems
	Output log10-Notation

	House Keeping
	Output: Return Codes
	Handling of Temporary Files
	Signal Handling
	Tooling/Solver Calls

	Submission Requirements
	Type of Solver
	Publication of the Submission

	Expected Timeline
	Arena
	Instances
	Cluster
	Timeouts
	Judges
	Evaluation Measure

	Contact

